
719

Chapter 18

Reflection

In this chapter:

Working with Assemblies and Modules . 720

Working with Types. 727

Reflection at Run Time . 754

Reflection is a set of classes that allow you to access and manipulate assemblies and modules
and the types and the metadata that they contain. For example, you can use reflection to
enumerate loaded assemblies, modules, and classes and the methods, properties, fields, and
events that each type exposes. Reflection plays a fundamental role in the Microsoft .NET
Framework and works as a building block for other important portions of the runtime. The
runtime uses reflection in many circumstances, such as to enumerate fields when a type is
being serialized or is being marshaled to another process or another machine. Microsoft
Visual Basic transparently uses reflection whenever you access an object’s method through
late binding.

Reflection code typically uses the types in the System.Reflection namespace; the only class
used by reflection outside this namespace is System.Type, which represents a type in a man-
aged module. The .NET Framework also contains the System.Reflection.Emit namespace,
which contains classes that let you create an assembly dynamically in memory. For example,
the .NET Framework uses the classes in this namespace to compile a regular expression
into IL code when the RegexOptions.Compiled option is specified. Because of its narrow
scope, I won’t cover the System.Reflection.Emit namespace in this book.

Note To avoid long lines, code samples in this chapter assume that the following Imports
statements are used at the file or project level:

Imports System.CodeDom.Compiler

Imports System.Collections.Generic

Imports System.ComponentModel

Imports System.Diagnostics

Imports System.IO

Imports System.Reflection

Imports System.Runtime.InteropServices

C18621837.fm Page 719 Friday, December 9, 2005 12:19 PM

720 Part IV: Advanced Topics

Working with Assemblies and Modules
The types in the System.Reflection namespace form a logical hierarchy, at the top of which you
find the Assembly class, as you can see in Figure 18-1. All the classes in the hierarchy shown in the
figure belong to the System.Reflection namespace, except System.Type. FieldInfo, PropertyInfo,
and EventInfo inherit from the MemberInfo abstract class, whereas MethodInfo and Constructor-
Info inherit from the MethodBase abstract class (which in turn derives from MemberInfo).

Figure 18-1 The Reflection logical hierarchy

In this section, I describe the Assembly, AssemblyName, and Module classes.

The Assembly Type

As its name implies, the Assembly type represents a .NET assembly. This type offers no construc-
tor method because you never actually create an assembly, but simply get a reference to an existing
assembly. There are many ways to perform this operation, as described in the following section.

Loading an Assembly

The Assembly type exposes several static methods that return a reference to an assembly,
either running or not (that is, stored on disk but currently not running):

' Get a reference to the assembly this code is running in.

Dim asm As Assembly = Assembly.GetExecutingAssembly()

Module

MethodInfo

ConstructorInfo

Type

FieldInfo

EventInfo

PropertyInfo

ParameterInfo

Assembly VersionAssemblyName

MemberInfo

MethodBase

C18621837.fm Page 720 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 721

' Get a reference to the assembly a type belongs to.

asm = Assembly.GetAssembly(GetType(System.Data.DataSet))

' Another way to reach the same result.

asm = GetType(System.Data.DataSet).Assembly

' Get a reference to an assembly given its display name.

' (The argument can be the assembly's full name, which includes

' version, culture, and public key.)

asm = Assembly.Load("mscorlib")

' Get a reference to an assembly given its filename or its full name.

asm = Assembly.LoadFrom("c:\myapp\mylib.dll")

' Another way to get a reference to an assembly given its path. (See text for notes.)

asm = Assembly.LoadFile("c:\myapp\mylib.dll")

Microsoft Visual Basic .NET 2003 requires that Assembly be enclosed in a pair of brackets
to distinguish it from the language keyword, but this restriction has been lifted in the current
version of the language. Also notice that Microsoft .NET Framework version 1.1 supports the
LoadWithPartialName method, which is now obsolete and causes a compilation warning.
Along the same lines, version 1.1 of these LoadXxxx methods ignores any unknown or incor-
rect attribute in the display name; in the same circumstances, the Microsoft .NET Framework
version 2.0 runtime throws an exception.

A few subtle differences exist among the Load, LoadFrom, and LoadFile methods, and
also a few minor changes from .NET Framework 1.1 might impact the way existing applica-
tions behave, as explained in the following list. These differences have to do with how the
assembly is located and the binding context in which the assembly is loaded. The binding
context works like a cache for loaded assemblies so that the .NET runtime doesn’t have to
locate the same assembly again and again each time the application asks for it. (See the section
titled “Previously Loaded Assemblies and GAC Searches” in Chapter 17, “Assemblies and
Resources.”)

The Load method takes the assembly name, either the short name or the fully qualified
name (that includes version, culture, and public key token). If a fully qualified name is
provided, this method searches the GAC first and, in general, it follows the same prob-
ing sequence that the .NET runtime applies when loading an assembly because your
code references one of its types. (See Chapter 17 for details about the probing process.)
Assemblies loaded with the Load method become part of the execution context; the
main advantage of assemblies loaded in this context is that the .NET runtime is able to
resolve their dependencies. You can enumerate assemblies in the execution context with
this code:

For Each refAsm As Assembly In AppDomain.CurrentDomain.GetAssemblies()

Console.WriteLine(refAsm.FullName)

Next

The LoadFrom method takes either a relative or absolute file path; if relative, the assem-
bly is searched in the application’s base directory. An assembly loaded with this method
becomes part of the LoadFrom context. If an NGen image for the assembly exists, it

C18621837.fm Page 721 Friday, December 9, 2005 12:19 PM

722 Part IV: Advanced Topics

won’t be used, but if an assembly with the same identity can be found by probing or is
already loaded in the LoadFrom context, the method returns that assembly instead, a
behavior that can be quite confusing. When an assembly in the LoadFrom context is
executed, the .NET runtime is able to locate its dependencies correctly only if they are
under the application’s base directory or are already loaded in the LoadFrom context.

The LoadFile method also takes a file path. It works similarly to LoadFrom, but the
assembly is loaded in a different context, and the .NET runtime is unable to find its
dependencies, unless they are already loaded in the Load context or you handle the
AssemblyResolve event of the AppDomain object. (See the next section for more details
about this event.)

To make things more complicated, the behavior of these methods has changed slightly in .NET
Framework 2.0. First, both LoadFrom and LoadFile apply the probing policy (which they
ignored in .NET Framework 1.1). Second, these methods check the identity of the assembly
and load the assembly from the GAC if possible. There is a small probability that these
minor changes may break your existing code, so pay attention when you are migrating your
reflection-intensive applications to Microsoft Visual Basic 2005.

Another minor difference from version 1.1 is that if loading of an assembly fails once, it will
continue to fail even if you remedy the error, until that AppDomain exists. In other words, you
can’t just trap the exception and ask the user to install the requested assembly in the GAC or
in the application’s base directory. Instead, you’ll have to restart the application or at least
load the assembly in a different AppDomain.

.NET Framework 2.0 has the ability to load an assembly for inspection purposes only, using
either the ReflectionOnlyLoad or the ReflectionOnlyLoadFrom method:

' Load the System.Data.dll for reflection purposes.

asm = Assembly.ReflectionOnlyLoad(_

"System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")

' Load a file for reflection purposes, given its path.

asm = Assembly.ReflectionOnlyLoadFrom("c:\myapp\mylib.dll")

You can enumerate members and perform most other reflection-related operations when you
load an assembly in this way, but you can’t instantiate a type in these assemblies and therefore
you can’t execute any code inside them. Unlike the LoadFrom and LoadFile methods, you
are allowed to load the assembly even though Code Access Security (CAS) settings would
otherwise prevent you from doing so.

Another difference from other load methods is that the ReflectionOnlyLoad and Reflection-
OnlyLoadFrom methods ignore the binding policy. Thus, you can load exactly the assemblies
you are pointing to—you can even inspect assemblies compiled for a different process
architecture—except if you load an assembly with the same identity as one that is already
loaded in the inspection context, the latter assembly is returned.

C18621837.fm Page 722 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 723

Assemblies loaded with these two methods become part of yet another context, known as the
inspection context. There is exactly one inspection context in each AppDomain, and you can
enumerate the assemblies it contains with this code:

For Each refAsm As Assembly In AppDomain.CurrentDomain.ReflectionOnlyGetAssemblies()

Console.WriteLine(refAsm.FullName)

Next

The Assembly object has a new read-only property, ReflectionOnly, which returns True if the
assembly is loaded in the inspection context.

AppDomain Events

When the .NET runtime successfully loads an assembly, either as the result of a JIT-compilation
action or while executing an Assembly.LoadXxxx method, the AppDomain instance that
represents the current application domain fires an AssemblyLoad event. You can use this
event to determine exactly when an assembly is loaded, for example, for diagnostics purposes:

Sub TestAppDomainLoadAssemblyEvent()

' Subscribe to the AppDomain.AssemblyLoad event.

Dim appDom As AppDomain = AppDomain.CurrentDomain

AddHandler appDom.AssemblyLoad, AddressOf AppDomain_AssemblyLoad

' This statement causes the JIT compilation of DoSomethingWithXml method,

' which in turn loads the System.Xml.dll assembly.

DoSomethingWithXml()

' Unsubscribe from the event.

RemoveHandler appDom.AssemblyLoad, AddressOf AppDomain_AssemblyLoad

End Sub

Private Sub DoSomethingWithXml()

' This statement causes the loading of the System.Xml.dll assembly

' (assuming that no other XML-related type has been used already and that

' the program has been compiled in Release mode).

Dim doc As New System.Xml.XmlDocument()

End Sub

Sub AppDomain_AssemblyLoad(ByVal sender As Object, ByVal e As AssemblyLoadEventArgs)

Console.WriteLine("Assembly {0} is being loaded", e.LoadedAssembly.Location)

End Sub

Notice that methods in applications compiled in Debug mode are JIT-compiled earlier; there-
fore, the previous code snippet delivers the expected results only if compiled in Release mode.

When the .NET runtime isn’t able to load an assembly, the current AppDomain instance
fires an AssemblyResolve event. By handling this event, you can tell the CLR where the assem-
bly is located. For example, let’s suppose that you want to force an application to search for
dependent assemblies—either private or shared—in a given folder. As you might recall from
Chapter 17, by default weakly typed assemblies must be located in the application’s folder or
one of its subfolders, but the AssemblyResolve event enables you effectively to override the
.NET standard binding policy. The handler for this event is peculiar: it is implemented as a

C18621837.fm Page 723 Friday, December 9, 2005 12:19 PM

724 Part IV: Advanced Topics

Function that returns an Assembly instance (the assembly that our code loaded manually) or
Nothing if the load operation must fail:

Sub AppDomainAssemblyResolveEvent()

' Subscribe to the AppDomain.AssemblyResolve event.

Dim appDom As AppDomain = AppDomain.CurrentDomain

AddHandler appDom.AssemblyResolve, AddressOf AppDomain_AssemblyResolve

' Attempt to load an assembly that isn't in the private path.

Dim asm As Assembly = Assembly.Load("EvaluatorLibrary")

Console.WriteLine("Found {0} assembly at {1}", asm.FullName, asm.Location)

' Unsubscribe from the event.

RemoveHandler appDom.AssemblyResolve, AddressOf AppDomain_AssemblyResolve

End Sub

Private Function AppDomain_AssemblyResolve(ByVal sender As Object, _

ByVal e As ResolveEventArgs) As Assembly

' Search the assembly in a different directory.

Dim searchDir As String = "c:\myassemblies"

For Each dllFile As String In Directory.GetFiles(searchDir, "*.dll")

Try

Dim asm As Assembly = Assembly.LoadFile(dllFile)

' If the DLL is an assembly and its name matches, we've found it.

If asm.GetName().Name = e.Name Then Return asm

Catch ex As Exception

' Ignore DLLs that aren't valid assemblies.

End Try

Next

' If we get here, return Nothing to signal that the search failed.

Return Nothing

End Function

The AssemblyResolve event lets you do wonders, if used appropriately. For example, you
might load an assembly from a network share; or you might store all your assemblies in a data-
base binary field and load them when needed, leveraging the Assembly.Load overload that
takes a Byte array as an argument.

The AppDomain type also exposes the ReflectionOnlyAssemblyResolve event. As its
name suggests, this event is similar to AssemblyResolve, except it fires when the resolution
of an assembly fails in the reflection-only context, that is, when the ReflectionOnlyLoad
or the ReflectionOnlyLoadFrom method fails. The ReflectionOnlyAssemblyResolve event
also fires when the .NET runtime successfully locates the assembly you’re loading for
reflection-only purposes but fails to load one of the assemblies that the target assembly
depends on.

Properties and Methods

Once you have a valid reference to an Assembly object, you can query its properties to learn
additional information about it. For example, the FullName property returns a string that
holds information about the version and the public key token (this data is the same as the
string returned by the ToString method).

C18621837.fm Page 724 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 725

' This is the ADO.NET assembly.

asm = GetType(System.Data.DataSet).Assembly

Console.WriteLine(asm.FullName)

' => System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

The Location and CodeBase read-only properties both return the actual location of the assem-
bly’s file, so you can learn where assemblies in the GAC are actually stored, for example:

Console.WriteLine(asm.Location)

' => C:\WINDOWS\assembly\GAC_32\System.Data\2.0.0.0__ b77a5c561934e089\System.Data.dll

When you’re not working with assemblies downloaded from the Internet, the information
these properties return differs only in format:

' …(Continuing previous example)…

Console.WriteLine(asm.CodeBase)

' => file:///C:/WINDOWS/assembly/GAC_32/System.Data/2.0.0.0__

b77a5c561934e089/System.Data.dll

The GlobalAssemblyCache property returns a Boolean value that tells you whether the assembly
was loaded from the GAC. The ImageRuntimeVersion returns a string that describes the version
of the CLR stored in the assembly’s manifest (for example, v.2.0.50727). The EntryPoint property
returns a MethodInfo object that describes the entry point method for the assembly, or it returns
Nothing if the assembly has no entry point (for example, if it’s a DLL class library). MethodInfo
objects are described in the section titled “Enumerating Members” later in this chapter.

The Assembly class exposes many instance methods, the majority of which enable you to enu-
merate all the modules, files, and types in the assembly. For example, the GetTypes method
returns an array with all the types (classes, interfaces, and so on) defined in an assembly:

' Enumerate all the types defined in an assembly.

For Each ty As Type In asm.GetTypes()

Console.WriteLine(ty.FullName)

Next

You can also list only the public types that an assembly exports by using the GetExported-
Types method.

The Assembly class overloads the GetType method inherited from System.Object so that it
can take a type name and return the specified Type object.

' Next statement assumes that the asm variable is pointing to System.Data.dll.

Dim ty2 As Type = asm.GetType("System.Data.DataTable")

If the assembly doesn’t contain the specified type, the GetType method returns Nothing. By
passing True as its second argument, you can have this method throw a TypeLoadException
if the specified type isn’t found, and you can have the type name compared in a case-insensi-
tive way by passing True as a third argument:

' This statement doesn't raise any exception because type name

' is compared in a case-insensitive way.

Dim ty3 As Type = asm.GetType("system.data.datatable", True, True)

C18621837.fm Page 725 Friday, December 9, 2005 12:19 PM

726 Part IV: Advanced Topics

Finally, two methods of the Assembly class return an AssemblyName object, which is
described in the next section.

The AssemblyName Type

The AssemblyName class represents the object that .NET uses to hold the identity and to
retrieve information about an assembly. A fully specified AssemblyName object has a name,
a culture, and a version number, but the runtime can also use partially filled AssemblyName
objects when searching for an assembly to be bound to caller code. Most often, you get
a reference to an existing AssemblyName object by using the GetName property of the
Assembly object:

' Get a reference to an assembly and its AssemblyName.

Dim asm As Assembly = Assembly.Load("mscorlib")

Dim an As AssemblyName = asm.GetName()

You can also get an array of AssemblyName objects using the GetReferencedAssemblies
method:

' Get information on all the assemblies referenced by the current assembly.

Dim anArr() As AssemblyName

anArr = Assembly.GetExecutingAssembly.GetReferencedAssemblies()

Most of the properties of the AssemblyName type are self-explanatory, and some of them are
also properties of the Assembly type (as is the case of the FullName and CodeBase properties):

Console.WriteLine(an.FullName)

' => mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

' The ProcessorArchitecture property is new in .NET Framework 2.0.

' It can be MSIL, X86, IA64, Amd64, or None.

Console.WriteLine(an.ProcessorArchitecture.ToString()) ' => X86

' These properties come from the version object.

Console.WriteLine(an.Version.Major) ' => 2

Console.WriteLine(an.Version.Minor) ' => 0

Console.WriteLine(an.Version.Build) ' => 0

Console.WriteLine(an.Version.Revision) ' => 0

' You can also get the version as a single number.

Console.WriteLine(an.Version) ' => 2.0.0.0

A few methods of the AssemblyName object return a Byte array. For example, you can get
the public key and the public key token by using the GetPublicKey and GetPublicKeyToken
methods:

' Display the public key token of the assembly.

For Each b As Byte In an.GetPublicKeyToken()

Console.Write("{0} ", b)

Next

The CultureInfo property gets or sets the culture supported by the assembly, or returns Noth-
ing if the assembly is culture-neutral.

C18621837.fm Page 726 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 727

Unlike most other reflection types, the AssemblyName type has a constructor, which lets you
create an AssemblyName instance from the display name of an assembly:

Dim an2 As New AssemblyName("mscorlib, Version=2.0.0.0, Culture=neutral, " _

& "PublicKeyToken=b77a5c561934e089, ProcessorArchitecture=x86")

The Module Type

The Module class represents one of the modules in an assembly; don’t confuse it with a Visual
Basic Module block, which corresponds to a Type object. You can enumerate all the elements
in an assembly by using the Assembly.GetModules method:

' Enumerate all the modules in the mscorlib assembly.

Dim asm As Assembly = Assembly.Load("mscorlib")

' (Note that Module is a reserved word in Visual Basic.)

For Each mo As [Module] In asm.GetModules()

Console.WriteLine("{0} – {1}", mo.Name, mo.ScopeName)

Next

The preceding code produces only one output line:

mscorlib.dll - CommonLanguageRuntimeLibrary

The Name property returns the name of the actual DLL or EXE, whereas the ScopeName
property is a readable string that represents the module. The vast majority of .NET assemblies
(and all the assemblies you can build with Microsoft Visual Studio 2005 without using the
Assembly Linker tool) contain only one module. This module is the one that contains
the assembly manifest, and you can get a reference to it by means of the Assembly.Manifest-
Module property:

Dim manModule As [Module] = asm.ManifestModule

In general, you rarely need to work with the Module type, and I won’t cover it in more detail in
this book.

Working with Types
The System.Type class is central to all reflection actions. It represents a managed type, a con-
cept that encompasses classes, structures, modules, interfaces, and enums. The Type class
provides all the means to enumerate a type’s fields, properties, methods, and events, as well as
set properties and fields and invoke methods dynamically.

An interesting detail: a Type object that represents a managed type is unique in a given App-
Domain. This means that when you retrieve the Type object corresponding to a given type (for
example, System.String) you always get the same instance, regardless of how you retrieve the
Type object. This feature allows for the automatic synchronization of multiple static method
invocations, among other benefits.

C18621837.fm Page 727 Friday, December 9, 2005 12:19 PM

728 Part IV: Advanced Topics

Retrieving a Type Object

The Type class itself doesn’t expose any constructors because you never really create a Type
object; rather, you get a reference to an existing one. You can choose from many ways to
retrieve a reference to a Type object. In previous sections, you saw that you can enumerate all
the types in an Assembly or a Module:

For Each t As Type In asm.GetTypes()

Console.WriteLine(t.FullName)

Next

More often, you get a Type object using the Visual Basic GetType operator, which takes the
unquoted name of a class:

Dim ty As Type = GetType(String)

Console.WriteLine(ty.FullName) ' => System.String

If you already have an instance of the class in question, you can use the GetType method that
all objects inherit from System.Object:

Dim d As Double = 123.45

ty = d.GetType()

Console.WriteLine(ty.FullName) ' => System.Double

The Type.GetType static method takes a quoted class name, so you can build the name of the
class dynamically (something you can’t do with the GetType function):

' Note that you can't pass Type.GetType a Visual Basic synonym,

' such as Short, Integer, Long, or Date.

ty = Type.GetType("System.Int64")

Console.WriteLine(ty.FullName) ' => System.Int64

The GetType method looks for the specified type in the current assembly and then
in the system assembly (mscorlib.dll). Like the Assembly.GetType instance method, the
Type.GetType static method returns Nothing if the specified type doesn’t exist, but you can
also pass True as its second argument to force a TypeLoadException in this case, and you
can pass True as its third argument if you want the type name to be compared in a case-
insensitive way. If the type you want to reference is neither in the caller’s assembly nor in
mscorlib.dll, you must append a comma and the name of the assembly in which the type
resides. For example, the following code snippet shows how you get a reference to the
System.Data.DataSet class, which resides in the assembly named System.Data. Because
the GAC might contain many assemblies with this friendly name, you must pass the
complete identity of the assembly after the first comma:

Dim typeName As String = "System.Data.DataSet, System.Data, " _

& "Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

ty = Type.GetType(typeName)

C18621837.fm Page 728 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 729

.NET Framework 2.0 adds a variant of the previous method, which loads a type for inspection
purposes only (similar to the Assembly.ReflectionOnlyLoad method):

' Second argument tells whether an exception is thrown if the type isn't found.

' Third argument tells whether case should be ignored in the search.

ty = Type.ReflectionOnlyGetType(typeName, False, True)

The TypeResolve Event

When the .NET runtime isn’t able to load a type successfully, it fires the TypeResolve event of
the AppDomain object that represents the current application domain. As it happens with the
AssemblyResolve event, the TypeResolve event gives you the ability to override the .NET
Framework’s default binding policy. The following example shows how you can use this
event:

Sub TestTypeResolveEvent()

' Subscribe to the AppDomain.TypeResolve event.

Dim appDom As AppDomain = AppDomain.CurrentDomain

AddHandler appDom.TypeResolve, AddressOf AppDomain_TypeResolve

' Get a reference to the Form type.

' (It should fail, but it doesn't because we are handling the TypeResolve event.)

Dim ty As Type = Type.GetType("System.Windows.Forms.Form")

' Create a form and show it.

Dim obj As Object = ty.InvokeMember("", BindingFlags.CreateInstance, Nothing, _

Nothing, Nothing, Nothing)

ty.InvokeMember("Show", BindingFlags.InvokeMethod, Nothing, obj, Nothing)

' Unsubscribe from the event.

RemoveHandler appDom.TypeResolve, AddressOf AppDomain_TypeResolve

End Sub

Private Function AppDomain_TypeResolve(ByVal sender As Object, _

ByVal e As ResolveEventArgs) As Assembly

If e.Name = "System.Windows.Forms.Form" Then

Dim asmFile As String = Path.Combine(_

RuntimeEnvironment.GetRuntimeDirectory, "System.Windows.Forms.dll")

Return Assembly.LoadFile(asmFile)

End If

' Return Nothing if unable to provide an alternative.

Return Nothing

End Function

The TypeResolve event fires when you fail to load a type through reflection, but it doesn’t
when the .NET runtime has located the assembly and the assembly doesn’t contain the
searched type. (If the CLR isn’t able to locate the assembly, an AppDomain.AssemblyResolve
event fires.) For example, the following statement doesn’t cause the TypeResolve event to
be fired because the CLR can locate the mscorlib.dll even though that assembly doesn’t
contain the definition of the Form type:

Dim ty2 As Type = GetType(Object).Assembly.GetType("System.Windows.Forms.Form")

C18621837.fm Page 729 Friday, December 9, 2005 12:19 PM

730 Part IV: Advanced Topics

Exploring Type Properties

All the properties of the Type object are read-only for one obvious reason: you can’t change an
attribute (such as name or scope) of a type defined in a compiled assembly. The names of
most properties are self-explanatory, such as the Name (the type’s name), FullName (the
complete name, which includes the namespace), and Assembly (the Assembly object that con-
tains the type). The IsClass, IsInterface, IsEnum, and IsValueType properties let you classify a
given Type object. For example, the following code lists all the types exported by mscorlib.dll,
specifying whether each is a class, an enum, a value type, or an interface:

Dim asm As Assembly = Assembly.Load("mscorlib")

For Each t As Type In asm.GetExportedTypes()

If t.IsClass Then

Console.WriteLine(t.Name & " (Class)")

ElseIf t.IsEnum Then

' An enum is also a value type, so we must test IsEnum before IsValueType.

Console.WriteLine(t.Name & " (Enum)")

ElseIf t.IsValueType Then

Console.WriteLine(t.Name & " (Structure)")

ElseIf t.IsInterface Then

Console.WriteLine(t.Name & " (Interface)")

Else

' This statement is never reached because a type

' can't be anything other than one of the above.

End If

Next

The IsPublic and IsNotPublic properties return information about the type’s visibility. You
should use these properties only with types that aren’t nested in other types: the IsPublic
property of a nested type is always False.

If the type is nested inside another type, you must use the following IsNestedXxxx properties
to deduce the scope used to declare the type: IsNestedPublic (Public), IsNestedAssembly
(Friend), IsNestedFamily (Protected), IsNestedFamORAssem (Protected Friend), IsNested-
Private (Private), and IsNestedFamANDAssem (Protected and visible only from inside the
assembly, a scope you can’t define with Visual Basic). You can also use the DeclaringType
property to get the enclosing type of a nested type; this property returns Nothing if the type
isn’t nested.

While we are on this subject, notice that the FullName property of a nested type includes a
plus sign (+) to separate the name of the class and the name of its enclosing type, as in:

MyNamespace.MyEnclosingType+MyNestedType

A couple of properties are new in .NET Framework 2.0: IsNested returns True if the type is
nested in another type (regardless of its scope), whereas IsVisible lets you determine whether
the type can be accessed from outside the assembly; it returns True if the type is a Public
top-level type or is a Public type nested inside a Public type.

C18621837.fm Page 730 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 731

You can get information about inheritance relationships by means of the BaseType (the base
class for a type), IsAbstract (True for MustInherit classes), and IsSealed (True for NotInherit-
able classes) properties:

' (The asm variable is pointing to mscorlib…)

For Each t As Type In asm.GetExportedTypes()

Dim text As String = t.FullName & " "

If t.IsAbstract Then text &= "MustInherit "

If t.IsSealed Then text &= "NotInheritable "

' We need this test because System.Object has no base class.

If t.BaseType IsNot Nothing Then

text &= "(base: " & t.BaseType.FullName & ") "

End If

Console.WriteLine(text)

Next

You can get additional information on a given type by querying a few methods, such as
IsSubclassOfType (returns True if the current type is derived from the type passed as an argu-
ment), IsAssignableFrom (returns True if the type passed as an argument can be assigned
to the current type), and IsInstanceOfType (returns True if the object passed as an argument
is an instance of the current type). Let’s recap a few of the many ways you have to test an
object’s type:

If TypeOf obj Is Person Then

' obj can be assigned to a Person variable (the Visual Basic way).

End If

If GetType(Person).IsAssignableFrom(obj.GetType()) Then

' obj can be assigned to a Person variable (the reflection way).

End If

If GetType(Person).IsInstanceOfType(obj) Then

' obj is a Person object.

End If

If GetType(Person) Is obj.GetType() Then

' obj is a Person object (but fails if obj is Nothing).

End If

If obj.GetType().IsSubclassOf(GetType(Person)) Then

' obj is an object that inherits from Person.

End If

Enumerating Members

The Type class exposes an intimidatingly large number of methods. The following methods
let you enumerate type members: GetMembers, GetFields, GetProperties, GetMethods,
GetEvents, GetConstructors, GetInterfaces, GetNestedTypes, and GetDefaultMembers. All
these methods (note the plural names) return an array of elements that describe the members
of the type represented by the current Type object. The most generic method in this group is

C18621837.fm Page 731 Friday, December 9, 2005 12:19 PM

732 Part IV: Advanced Topics

GetMembers, which returns an array with all the fields, properties, methods, and events that
the type exposes. For example, the following code lists all the members of the System.String
type:

Dim minfos() As MemberInfo = GetType(String).GetMembers()

For Each mi As MemberInfo In minfos

Console.WriteLine("{0} ({1})", mi.Name, mi.MemberType)

Next

The GetMembers function returns an array of MemberInfo elements, where each MemberInfo
represents a field, a property, a method, a constructor, an event, or a nested type (including
delegates defined inside the class). MemberInfo is an abstract type from which more specific
types derive—for example, FieldInfo for field members and MethodInfo for method members.
The MemberInfo.MemberType enumerated property lets you discern between methods,
properties, fields, and so on.

The GetMembers method returns two or more MemberInfo objects with the same name if
the class exposes overloaded properties and methods. So, for example, the output from the
preceding code snippet includes multiple occurrences of the Format and Concat methods.
You also find multiple occurrences of the constructor method, which is always named
.ctor. In the next section, I show how you can explore the argument signature of these over-
loaded members. Also note that the GetMembers method returns public, instance, and
static members, as well as methods inherited by other objects, such as the GetHashCode
method inherited from System.Object.

The GetMembers method supports an optional BindingFlags enumerated argument. This
bit-coded value lets you narrow the enumeration—for example, by listing only public or
instance members. The BindingFlags type is used in many reflection methods and includes
many enumerated values, but in this case only a few are useful:

The Public and NonPublic enumerated values restrict the enumeration according to the
scope of the elements. (You must specify at least one of these flags to get a nonempty
result.)

The Instance and Static enumerated values restrict the enumeration to instance mem-
bers and static members, respectively. (You must specify at least one of these flags to get
a nonempty result.)

The DeclaredOnly enumerated value restricts the enumeration to members declared in
the current type (as opposed to members inherited from its base class).

The FlattenHierarchy enumerated value is used to include static members up the
hierarchy.

This code lists only the public, nonstatic, and noninherited members of the String class:

' Get all public, instance, noninherited members of String type.

Dim minfo() As MemberInfo = GetType(String).GetMembers(_

BindingFlags.Public Or BindingFlags.Instance Or BindingFlags.DeclaredOnly)

C18621837.fm Page 732 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 733

The preceding code snippet produces an array that includes the ToString method, which at
first glance shouldn’t be in the result because it’s inherited from System.Object. It’s included
because the String class adds an overloaded version of this method, and this overloaded
method is the one that appears in the result array.

To narrow the enumeration to a given member type, you can use a more specific GetXxxxs
method. When you’re using a GetXxxxs method other than GetMembers, you can assign the
result to an array of a more specific type, namely, PropertyInfo, MethodInfo, ConstructorInfo,
FieldInfo, or EventInfo. (All these specific types derive from MemberInfo.) For example, this
code lists only the methods of the String type:

For Each mi As MethodInfo In GetType(String).GetMethods()

Console.WriteLine(mi.Name)

Next

The GetInterfaces or GetNestedTypes method return an array of Type elements, rather than a
MemberInfo array, so the code in the loop is slightly different:

For Each itf As Type In GetType(String).GetInterfaces()

Console.WriteLine(itf.FullName)

Next

All the GetXxxxs methods—with the exception of GetDefaultMembers and GetInterfaces—can
take an optional BindingFlags argument to restrict the enumeration to public or nonpublic,
static or instance, and declared or inherited members. For more sophisticated searches, you
can use the FindMembers method, which takes a delegate pointing to a function that filters
individual members. (See MSDN documentation for additional information.)

In many cases, you don’t need to enumerate a type’s members because you have other ways to
find out the name of the field, property, methods, or event you want to get information about.
You can use the GetMember or other GetXxxx methods (where Xxxx is a singular word) of the
Type class—namely, GetMember, GetField, GetProperty, GetMethod, GetEvent, GetInterface,
GetConstructor, and GetNestedType—to get the corresponding MemberInfo (or a more
specific object):

' Get information about the String.Chars property.

Dim pi2 As PropertyInfo = GetType(String).GetProperty("Chars")

If you’re querying for an overloaded property or method, you need to ask for a specific version
of the member by using GetProperty or GetMethod and specifying the exact argument
signature by passing an array of Type objects as its second argument:

' Get the MethodInfo object for the IndexOf string method with the

' following signature: IndexOf(char, startIndex, endIndex).

' Prepare the signature as an array of Type objects.

Dim argTypes() As Type = {GetType(Char), GetType(Integer), GetType(Integer)}

' Ask for the method with given name and signature.

Dim mi2 As MethodInfo = GetType(String).GetMethod("IndexOf", argTypes)

C18621837.fm Page 733 Friday, December 9, 2005 12:19 PM

734 Part IV: Advanced Topics

The method signature you pass to GetMethod must include information about whether the
argument is passed by reference or is an array. Two new methods of the Type class make this
task simpler than it is in .NET Framework 1.1:

' This code shows how you can build a reference to the following method

' Sub TestMethod(ByRef x As Integer, ByVal arr(,) As String).

Dim argType1 As Type = GetType(Integer).MakeByRefType()

Dim argType2 As Type = GetType(String).MakeArrayType(2)

Dim arrTypes() As Type = {argType1, argType2}

Dim mi3 As MethodInfo = GetType(TestClass).GetMethod("TestMethod", arrTypes)

Speaking of arrays, notice that the name of array types ends with a pair of brackets:

Dim arrTy As Type = GetType(Integer())

Dim arrTy2 As Type = GetType(Integer(,))

Console.WriteLine(arrTy.FullName) ' => System.Int32[]

Console.WriteLine(arrTy2.FullName) ' => System.Int32[,]

Also, the name of a type that represents a ByRef argument has a trailing ampersand (&)
character; therefore, you need to process the value returned by the FullName property if you
want to display a type name using Visual Basic syntax:

Dim vbTypeName As String = _

argType1.FullName.Replace("[", "(").Replace("]", ")").Replace("&", "")

Finally, your code can easily get a reference to the MethodBase that describes the method
being executed by means of a static member of the MethodBase type:

Dim currMethod As MethodBase = MethodBase.GetCurrentMethod()

Exploring Type Members

After you get a reference to a MemberInfo object—or a more specific object, such as FieldInfo
or PropertyInfo—you can retrieve information about the corresponding member. Because
all these specific XxxxInfo objects derive from MemberInfo, they have some properties in
common, including Name, MemberType, ReflectedType (the type used to retrieve this
MemberInfo instance), and DeclaringType (the type where this member is declared). The
values returned by the last two properties differ only if the member has been inherited.

The following loop displays the name of all the members exposed by the String type, together
with a description of the member type. To make things more interesting, I’m suppressing
constructor methods, multiple definitions for overloaded methods, and methods inherited
from the base Object class:

' We use this ArrayList to keep track of items already displayed.

Dim al As New ArrayList()

For Each mi As MemberInfo In GetType(String).GetMembers()

If mi.MemberType = MemberTypes.Constructor Then

' Ignore constructor methods.

ElseIf Not mi.DeclaringType Is mi.ReflectedType Then

' Ignore inherited members.

C18621837.fm Page 734 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 735

ElseIf Not al.Contains(mi.Name) Then

' If this element hasn't been listed yet, do it now.

Console.WriteLine("{0} ({1})", mi.Name, mi.MemberType)

' Add this element to the list of processed items.

al.Add(mi.Name)

End If

Next

Exploring Fields

Except for the members inherited from MemberInfo, a FieldInfo object exposes only a few
properties, including FieldType (the type of the field), IsLiteral (True if the field is actually a
constant), IsInitOnly (True if the field is marked as ReadOnly), IsStatic (True if the field is
marked as Shared), and other Boolean properties that reflect the scope of the field, such as
IsPublic, IsAssembly (Friend), IsFamily (Protected), IsFamilyOrAssembly (Protected Friend),
IsFamilyAndAssembly (Protected but visible only from inside the same assembly, a scope
not supported by Visual Basic), and IsPrivate:

' List all the nonconstant fields with Public or Friend scope in the TestClass type.

For Each fi As FieldInfo In GetType(TestClass).GetFields(_

BindingFlags.Public Or BindingFlags.NonPublic Or BindingFlags.Instance)

If (fi.IsPublic OrElse fi.IsAssembly) AndAlso Not fi.IsLiteral Then

Console.WriteLine("{0} As {1}", fi.Name, fi.FieldType.Name)

End If

Next

A new method in .NET Framework 2.0 allows you to extract the value of a constant:

' List all the public constants in the TestClass type.

For Each fi As FieldInfo In GetType(TestClass).GetFields()

If fi.IsLiteral Then

Console.WriteLine("{0} = {1}", fi.Name, fi.GetRawConstantValue())

End If

Next

Exploring Methods

Like FieldInfo, the MethodInfo type exposes the IsStatic property and all the other scope-
related properties you’ve just seen, plus a few additional Boolean properties: IsVirtual (the
method is marked with the Overridable keyword), IsAbstract (MustOverride), and IsFinal
(NotOverridable). The IsSpecialName property returns True if the method has been created
by the compiler and should be dealt with in a special way, as is the case of the methods
generated by properties and operators. If the method returns a value (a Function, in Visual
Basic parlance), the ReturnType property returns the type of the return value; otherwise, it
returns a special type whose name is System.Void. This snippet uses these properties to
display information on all the methods in a class, exposed in a Visual Basic–like syntax:

For Each mi As MethodInfo In GetType(Array).GetMethods()

' Ignore special methods, such as property getters and setters.

If mi.IsSpecialName Then Continue For

C18621837.fm Page 735 Friday, December 9, 2005 12:19 PM

736 Part IV: Advanced Topics

If mi.IsFinal Then

Console.Write("NotOverridable ")

ElseIf mi.IsVirtual Then

Console.Write("Overridable ")

ElseIf mi.IsAbstract Then

Console.Write("MustOverride ")

End If

Dim retTypeName As String = mi.ReturnType.FullName

If retTypeName = "System.Void" Then

Console.WriteLine("Sub {0}", mi.Name)

Else

Console.WriteLine("Function {0} As {1}", mi.Name, retTypeName)

End If

Next

The ConstructorInfo type exposes the same members as the MethodInfo type (not surpris-
ingly because both these types inherit from the MethodBase abstract class, which in turn
derives from MemberInfo), with the exception of ReturnType (constructors don’t have a
return type).

Exploring Properties

The PropertyInfo type exposes only three interesting properties besides those inherited from
MemberInfo: PropertyType (the type returned by the property), CanRead (False for write-only
properties), and CanWrite (False for read-only properties). Oddly, the PropertyInfo type
doesn’t expose members that indicate the scope of the property or whether it’s a static property.
You can access this information only indirectly by means of one of the following methods:
GetGetMethod (which returns the MethodInfo object corresponding to the Get method),
GetSetMethod (the MethodInfo object corresponding to the Set method), or GetAccessors
(an array of one or two MethodInfo objects, corresponding to the Get and/or Set accessor
methods):

Sub ExploringProperties()

' Display instance and static Public properties.

For Each pi As PropertyInfo In GetType(TestClass).GetProperties(_

BindingFlags.Public Or BindingFlags.Instance Or BindingFlags.Static)

' Get either the Get or the Set accessor methods.

Dim modifier As String = ""

Dim mi As MethodInfo

If pi.CanRead Then

mi = pi.GetGetMethod()

If Not pi.CanWrite Then modifier = "ReadOnly "

Else

mi = pi.GetSetMethod()

modifier = "WriteOnly "

End If

' Add the Shared qualifier if necessary.

If mi.IsStatic Then modifier = "Shared " & modifier

' Display only Public and Protected properties.

If mi.IsPublic Or mi.IsFamily Then

Console.WriteLine("Public {0}Property {1} As {2}", modifier, pi.Name, _

C18621837.fm Page 736 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 737

pi.PropertyType.FullName)

End If

Next

End Sub

If you need to retrieve a property accessor only to determine its scope or whether the property
is static, you can use the GetAccessors method as follows:

' Get the first property accessor, even if it's private.

mi = pi.GetAccessors(True)(0)

By default the GetGetMethod, GetSetMethod, and GetAccessors methods return only public
accessor methods; if the accessor method doesn’t exist or isn’t public, the return value is
Nothing. However, these methods are overloaded to take a Boolean argument: if you pass
True, they return the accessor method even if it doesn’t have a public scope.

Exploring Events

Getting information about an event is complicated by the fact that the EventInfo type has no
property that lets you determine the scope of the event or whether it’s static. Instead, you
must use GetAddMethod to return the MethodInfo object corresponding to the method
that adds a new subscriber to the list of listeners for this event. (This is the method that
the AddHandler keyword calls for you behind the scenes.) Typically, this method is named
add_Eventname and is paired with the remove_Eventname hidden method (the method called
by RemoveHandler and whose MethodInfo is returned by the GetRemoveMethod). The
Visual Basic compiler creates these methods for you by default, unless you define a custom
event.

You can query the MethodInfo object returned by either GetAddMethod or GetRemoveMethod
to discover the event’s scope, its arguments, and whether it’s static:

' Get information on the SampleEvent event of the TestClass object.

Dim ei As EventInfo = GetType(TestClass).GetEvent("SampleEvent")

' Get a reference to the hidden add_SampleEvent method.

Dim mi2 As MethodInfo = ei.GetAddMethod()

' Test the method scope and check whether it's static.

…

Exploring Parameters

The one thing left to do is enumerate the parameters that a property or a method expects.
Both the GetIndexParameters (of ParameterInfo) and the GetParameters (of MethodInfo)
methods return an array of ParameterInfo objects, where each element describes the
attributes of the arguments passed to and from the member.

A ParameterInfo object has properties with names that are self-explanatory: Name (the name
of the parameter), ParameterType (the type of the parameter), Member (the MemberInfo
the parameter belongs to), Position (an integer that describes where the parameter appears in

C18621837.fm Page 737 Friday, December 9, 2005 12:19 PM

738 Part IV: Advanced Topics

the method signature), IsOptional (True for optional parameters), and DefaultValue (the
default value of an optional parameter). The following code shows how to display the calling
syntax for a given method:

Dim mi As MethodInfo = GetType(TestClass).GetMethod("MethodWithOptionalArgs")

Console.Write(mi.Name & "(")

For Each pi As ParameterInfo In mi.GetParameters()

' Display a comma if it isn't the first parameter.

If pi.Position > 0 Then Console.Write(", ")

If pi.IsOptional Then Console.Write("Optional ")

' Notice how you can discern between ByVal and ByRef parameters.

Dim direction As String = "ByVal"

If pi.ParameterType.IsByRef Then direction = "ByRef"

' Process the parameter type.

Dim tyName As String = pi.ParameterType.FullName

' Convert [] into () and drop the & character (included if parameter is ByRef).

tyName = tyName.Replace("[", "(").Replace("]", ")").Replace("&", "")

Console.Write("{0} {1} As {2}", direction, pi.Name, tyName)

' Append the default value for optional parameters.

If pi.IsOptional Then Console.Write(" = " & GetObjectValue(pi.DefaultValue))

Next

Console.WriteLine(")")

The previous code snippet uses the GetObjectValue auxiliary method, which returns the
value of an object in Visual Basic syntax:

Function GetObjectValue(ByVal obj As Object) As String

If obj Is Nothing Then

Return "Nothing"

ElseIf obj.GetType() Is GetType(String) Then

Return """" & obj.ToString() & """"

ElseIf obj.GetType() Is GetType(Date) Then

Return "#" & obj.ToString() & "#"

ElseIf obj.GetType().IsEnum Then

' It's an enum type.

Return obj.GetType().Name & "." & [Enum].GetName(obj.GetType(), obj)

Else

' It's something else, including a number.

Return obj.ToString()

End If

End Function

Getting the syntax for an event is more complicated because the EventInfo object doesn’t
expose the GetParameters method. Instead, you must use the EventHandlerType property to
retrieve the Type object corresponding to the delegate that defines the event. The Invoke
method of this delegate, in turn, has the same signature as the event:

Dim ei As EventInfo = GetType(TestClass).GetEvent("SampleEvent")

Dim delegType As Type = ei.EventHandlerType

Dim mi2 As MethodInfo = delegType.GetMethod("Invoke")

For Each pi As ParameterInfo In mi2.GetParameters()

…

Next

C18621837.fm Page 738 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 739

Exploring the Method Body

Version 2.0 of the .NET Framework introduces a new feature that, although not completely
implemented, surely goes in a very promising direction: the ability to peek at the IL code
compiled for a given method. The entry point for this capability is the new MethodBase
.GetMethodBody method, which returns a MethodBody object. In turn, a MethodBody object
exposes properties that let you list the local variables, evaluate the size of the stack that the
method uses, and explore the Try…Catch exception handlers defined in the inspected method.

' Get a reference to the method in a type.

Dim mi As MethodInfo = GetType(TestClass).GetMethod("TestMethod")

Dim mb As MethodBody = mi.GetMethodBody()

' Display the number of used stack elements.

Console.WriteLine("Stack Size = {0}", mb.MaxStackSize)

' Display index and type of local variables.

Console.WriteLine("Local variables:")

For Each lvi As LocalVariableInfo In mb.LocalVariables

Console.WriteLine(" var[{0}] As {1}", lvi.LocalIndex, lvi.LocalType.FullName)

Next

' Display information about exception handlers.

Console.WriteLine("Exception handlers:")

For Each ehc As ExceptionHandlingClause In mb.ExceptionHandlingClauses

Console.Write(" Type={0}, ", ehc.Flags.ToString())

If ehc.Flags = ExceptionHandlingClauseOptions.Clause Then

Console.Write("ex As {0}, ", ehc.CatchType.Name)

End If

Console.Write("Try off/len={0}/{1}, ", ehc.TryOffset, ehc.TryLength)

Console.WriteLine("Handler off/len={0}/{1}", ehc.HandlerOffset, ehc.HandlerLength)

Next

The list of exception handlers doesn’t differentiate between Catch and Finally clauses belong-
ing to distinct Try blocks, but you can group them correctly by looking at elements with
identical TryOffset properties. The Flags property of the ExceptionHandlingClause object
helps you understand whether the clause is a filter (When block), a clause (Catch block), or
a Finally block. The type of the Exception object is exposed by the CatchType property. For
example, given the following method:

Sub TestMethod(ByRef x As Integer, ByVal arr(,) As String)

Try

Console.WriteLine("First Try block")

Catch ex As NullReferenceException

…

Catch ex As Exception

…

Finally

…

End Try

Try

Console.WriteLine("Second Try block")

C18621837.fm Page 739 Friday, December 9, 2005 12:19 PM

740 Part IV: Advanced Topics

Catch ex As NullReferenceException

…

Catch ex As OverflowException

…

Catch ex As Exception

…

End Try

End Sub

Here’s the information that might be displayed in the console window. (The actual offset and
length information varies depending on the actual executable statements in the method.)

Stack Size = 2

Local variables:

var[0] As System.NullReferenceException

var[1] As System.Exception

var[2] As System.NullReferenceException

var[3] As System.OverflowException

var[4] As System.Exception

Exception handlers:

Type=Clause, ex As NullReferenceException, Try off/len=2/14, Handler off/len=16/26

Type=Clause, ex As Exception, Try off/len=2/14, Handler off/len =42/26

Type=Finally, Try off/len=2/66, Handler off/len=68/12

Type=Clause, ex As NullReferenceException, Try off/len=82/13, Handler off/len=95/26

Type=Clause, ex As OverflowException, Try off/len=82/13, Handler off/len=121/26

Type=Clause, ex As Exception, Try off/len=82/13, Handler off/len=147/27

Notice that the list of local variables is likely to include variables that you haven’t declared
explicitly but that are created for you by the compiler to store intermediate results, such as the
Exception variables in Catch clauses or the upper limit of a For loop.

The only method of the MethodBody object of interest is GetILAsByteArray, which returns an
array containing the raw IL opcodes. These opcodes are fully documented, so you might use
this method to disassemble a .NET executable. As you can guess, this isn’t exactly a trivial
task, however.

Reflecting on Generics

Reflection techniques in .NET Framework 2.0 fully support generic types, and you must
account for them when exploring the types that an assembly exposes.

Exploring Generic Types

You can distinguish generic type definitions from regular types when enumerating all the
types in an assembly by checking their IsGenericTypeDefinition method. The full name of a
generic type definition contains a inverse quote character followed by the number of type
arguments in the definition. Therefore, given the following code:

' List all the generic types in mscorlib.

Dim asm As Assembly = GetType(Object).Assembly

C18621837.fm Page 740 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 741

For Each ty As Type In asm.GetTypes()

If ty.IsGenericTypeDefinition() Then

Console.WriteLine(ty.FullName)

End If

Next

This is the kind of results you’ll see in the console window:

System.Collections.Generic.List`1

System.Collections.Generic.Dictionary`2

System.Action`1

…

The names of the generic parameters in the type definition don’t appear in the type name
because they aren’t meaningful in the composition of a unique type name: as you might recall
from Chapter 11, “Generics,” you can have two generic type definitions with the same name
only if the number of their generic parameters differs. The syntax based on the inverse
quote character becomes important if you want to retrieve a reference to the generic type
definition, as in this code:

Dim genType As Type = asm.GetType("System.Collections.Generic.Dictionary`2")

There is no built-in method or property that returns the signature of the generic type as it
appears in source code, and thus you have to manually strip the inverse quote character from
the name and use the GetGenericArguments method to retrieve the name of type parameters:

' (Continuing previous code example)

Dim typeName As String = genType.FullName

' Strip the inverse quote character.

typeName = typeName.Remove(typeName.IndexOf("`"c)) & "(Of "

' Append the name of each type parameter.

For Each tyArg As Type In genType.GetGenericArguments()

' The GenericParameterPosition property reflects the position where

' this argument appears in the signature.

If tyArg.GenericParameterPosition > 0 Then typeName &= ","

typeName &= tyArg.Name

Next

typeName &= ")" ' => System.Collections.Generic.Dictionary(Of TKey,TValue)

Exploring Generic Methods

You must adopt a similar approach when exploring the generics methods of a type. (Remem-
ber that a method with generic arguments can appear in both a regular and a generic type.)
You can check whether a method has a generic definition by means of the MethodInfo
.IsGenericMethodDefinition method and explore its generic parameters by means of the
MethodInfo.GetGenericArguments method. For example, the following loop displays
the name of all the methods in a type using the Of clause for generic methods:

' List all the generic methods of the System.Array type.

For Each mi As MethodInfo In GetType(Array).GetMethods()

If mi.IsGenericMethodDefinition Then

Dim methodName As String = mi.Name & "(Of "

C18621837.fm Page 741 Friday, December 9, 2005 12:19 PM

742 Part IV: Advanced Topics

For Each tyArg2 As Type In mi.GetGenericArguments()

If tyArg2.GenericParameterPosition > 0 Then methodName &= ","

methodName &= tyArg2.Name

Next

methodName &= ")"

Console.WriteLine(methodName) ' => IndexOf(Of T),…

End If

Next

When you explore the parameters of a method, you must discern between regular types (e.g.,
System.String) and types passed as an argument to a generic type or method (e.g., T or K).
This is possible because the Type class exposes a new IsGenericParameter property, which
returns False in the former case and True in the latter. It is essential that you test this method
before doing anything else with a Type value because some properties of a type used as a
parameter in a generic class return meaningless values or might throw an exception. For
example, this is the most correct way to assemble the signature of a method:

' (The mi variable points to a MethodInfo object.)

Dim signature As String = mi.Name & "("

For Each par As ParameterInfo In mi.GetParameters()

If par.Position > 0 Then signature &= ", "

signature &= par.Name & " As " & GetTypeName(par.ParameterType)

Next

signature &= ")"

Dim retType As Type = mi.ReturnType

If retType.FullName <> "System.Void" Then

signature &= " As " & GetTypeName(retType)

End If

Console.WriteLine(signature)

' => TestMethod(key As K, values As V(), count As System.Int32) As T

where the GetTypeName function is defined as follows:

Function GetTypeName(ByVal type As Type) As String

If type.IsGenericParameter Then

Return type.Name

Else

Return type.FullName.Replace("[", "(").Replace("]", ")").Replace("&", "")

End If

End Function

Exploring Members That Use Generic Types

A slightly different problem occurs when you are dealing with a member of a type (either a reg-
ular or generic type) and the member uses or returns a generic type that has already been
bound with nongeneric arguments, as in the following case:

Function Convert(x As List(Of Integer)) As Dictionary(Of String, Double)

…

End Function

C18621837.fm Page 742 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 743

When you reflect on the argument and the return type of the previous method, you get the
following types:

System.Collections.Generic.List`1[[System.Int32, mscorlib, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089]]

System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089],

[System.Double, mscorlib, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089]]

Three details are worth noticing:

The type name uses the inverse quote character syntax and is followed by the names of
all the types that are bound to the generic type.

Each argument consists of the type’s full name followed by the display name of the
assembly where the type is defined, all enclosed in a pair of square brackets.

The entire list of argument types is enclosed in an additional pair of square brackets.

You can easily extract the name of a generic type and its argument types by parsing this full
name, for example, by using a regular expression. Alternatively, you can use the IsGenericType
method to check whether the type is the bound version of a generic type, and, if this is the case,
you can use the GetGenericTypeDefinition method to extract the name of the original generic
type and the GetGenericArguments method to extract the type of individual type arguments:

' (The mi variable points to a MethodInfo object.)

Dim retType As Type = mi.ReturnType

Dim typeName As String = retType.GetGenericTypeDefinition.FullName

typeName = typeName.Remove(typeName.IndexOf("`"c)) & "(Of "

Dim sep As String = ""

For Each argType As Type In retType.GetGenericArguments

typeName &= sep & GetTypeName(argType)

sep = ", "

Next

typeName &= ")"

Console.WriteLine(typeName)

' => System.Collections.Generic.Dictionary(Of System.String, System.Double)

In practice, you can gather all the cases that I’ve illustrated so far in an expanded version of
the GetTypeName function (which I introduced in the previous section):

Function GetTypeName(ByVal type As Type) As String

Dim typeName As String = Nothing

If type.IsGenericTypeDefinition Then

' It's the type definition of an "open" generic type.

typeName = type.FullName

typeName = typeName.Remove(typeName.IndexOf("`"c)) & "(Of "

For Each targ As Type In type.GetGenericArguments()

If targ.GenericParameterPosition > 0 Then typeName &= ","

C18621837.fm Page 743 Friday, December 9, 2005 12:19 PM

744 Part IV: Advanced Topics

typeName &= targ.Name

Next

typeName &= ")"

ElseIf type.IsGenericParameter Then

' It's a parameter in an Of clause.

typeName = type.Name

ElseIf type.IsGenericType Then

' This is a generic type that has been bound to specific types.

typeName = type.GetGenericTypeDefinition.FullName

typeName = typeName.Remove(typeName.IndexOf("`"c)) & "(Of "

Dim sep As String = ""

For Each argType As Type In type.GetGenericArguments

typeName &= sep & GetTypeName(argType)

sep = ", "

Next

typeName &= ")"

Else

' This is a regular type.

typeName = type.FullName

End If

' Account for array types and byref types.

typeName = typeName.Replace("[", "(").Replace("]", ")").Replace("&", "")

Return typeName

End Function

Thanks to its being recursive, this function is able to deal correctly even with contorted cases
such as these:

Public MyList As List(Of Dictionary(Of String, Double))

Public MyDictionary As Dictionary(Of String, Dictionary(Of String, List(Of Integer)))

Binding a Generic Type

Sometimes you might need to bind a generic type with a set of one or more specific type
arguments. This is necessary, for example, when you want to retrieve the Type object that
corresponds to List(Of String) or Dictionary(Of String, Integer). The key for this operation is
the Type.MakeGenericType method:

' Retrieve the type that corresponds to MyGenericTable(Of String, Double).

Dim typeName As String = "MyApp.MyGenericTable`2"

' Get a reference to the "open" generic type.

Dim genType As Type = Assembly.GetExecutingAssembly().GetType(typeName)

' Bind the "open" generic type to a set of arguments, and retrieve

' a reference to the MyGenericTable(Of String, Double).

Dim type As Type = genType.MakeGenericType(GetType(String), GetType(Double))

A bound generic type can be useful on at least a couple of occasions. First, you can use it when
you need to create an instance of a specific type. (I cover object instantiation through reflec-
tion later in this chapter.) Second, you can use it when you are looking for a method with a
signature that contains an argument of a specific type. Say you have the following class:

Public Class TestClass

Sub TestSub(ByVal list As List(Of Integer), ByVal x As Integer)

…

C18621837.fm Page 744 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 745

End Sub

Sub TestSub(ByVal list As List(Of String), ByVal x As String)

…

End Sub

End Class

How can you build a MethodInfo object that points to the first TestMethod rather than the
second one? Here’s the solution:

' First, get a reference to the List "open" generic type.

Dim typeName As String = "System.Collections.Generic.List`1"

Dim openType As Type = GetType(Object).Assembly.GetType(typeName)

' Bind the open List type to the Integer type.

Dim boundType As Type = openType.MakeGenericType(GetType(Integer))

' Prepare the signature of the method you're interested in.

Dim argTypes() As Type = {boundType, GetType(Integer)}

' Get the reference to that specific method.

Dim method As MethodInfo = GetType(TestClass).GetMethod("TestSub", argTypes)

When you bind an open generic type to a set of argument types, you should ensure that
generic constraints are fulfilled. Reflection enables you to extract the constraints associated
with each argument by means of the GetGenericParameterConstraints method, whereas the
GenericParameterAttributes property returns an enum value that provides information about
the New, Class, and Structure constraints:

Dim genType As Type = Assembly.GetExecutingAssembly().GetType("MyApp.GenericList`1")

For Each argType As Type In genType.GetGenericArguments()

' Get the class and interface constraints for this argument.

For Each constraint As Type In argType.GetGenericParameterConstraints()

Console.WriteLine(constraint.FullName)

Next

' Get the New, Class, or Structure constraints.

Dim attrs As GenericParameterAttributes = argType.GenericParameterAttributes

If CBool(attrs And GenericParameterAttributes.DefaultConstructorConstraint) Then

Console.WriteLine(" New (default constructor)")

End If

If CBool(attrs And GenericParameterAttributes.ReferenceTypeConstraint) Then

Console.WriteLine(" Class (reference type)")

End If

If CBool(attrs And GenericParameterAttributes.NotNullableValueTypeConstraint) Then

Console.WriteLine(" Structure (nonnullable value type)")

End If

Next

Reflecting on Attributes

As you might recall from Chapter 2, “Basic Language Concepts,” .NET attributes provide a
standard way to extend the metadata at the assembly, type, and member levels and can
include additional information with a format defined by the programmer. Not surprisingly,
the .NET Framework also provides the means to read this attribute-based metadata from
an assembly. Because the attributes you define in your code are perfectly identical to the
attributes that the .NET Framework defines for its own purposes, the mechanism for extract-
ing either kind of attributes is the same. Therefore, even though in this section I show you how

C18621837.fm Page 745 Friday, December 9, 2005 12:19 PM

746 Part IV: Advanced Topics

to extract .NET attributes, keep in mind that you can apply the same techniques for extracting
your custom attributes. (You’ll find many examples of the latter ones in Chapter 19, “Custom
Attributes.”)

Exploring Attributes

You can use several techniques to extract the custom attribute associated with a specific element.

First, you can use the IsDefined method exposed by the Assembly, Module, Type, Parameter-
Info, and MemberInfo classes (and all the classes that inherit from MemberInfo, such as Field-
Info and PropertyInfo). This method returns True if the attribute is defined for the specified
element, but doesn’t let you read the attribute’s fields and properties. The last argument
passed to the method is a Boolean value that specifies whether attributes inherited from the
base class should be returned:

' The second argument specifies whether you also want to test

' attributes inherited from the base class.

If GetType(Person).IsDefined(GetType(SerializableAttribute), False) Then

Console.WriteLine("The Person class is serializable")

End If

(See the companion code for the complete listing of the Person type.) Second, you can use the
GetCustomAttributes method (note the plural) exposed by the Assembly, Module, Type,
ParameterInfo, and MemberInfo classes (and all the classes that inherit from MemberInfo).
This method returns an array containing all the attributes of the specified type that are asso-
ciated with the specified element so that you can read their fields and properties, and you can
specify whether attributes inherited from the base class should be included in the result:

' Display all the Conditional attributes associated with the Person.SendEmail method.

Dim mi As MethodInfo = GetType(Person).GetMethod("SendEmail")

' GetCustomAttributes returns an array of Object elements, so you need to cast.

Dim miAttrs() As ConditionalAttribute = DirectCast(_

mi.GetCustomAttributes(GetType(ConditionalAttribute), False), ConditionalAttribute())

' Check whether the result contains at least one element.

If miAttrs.Length > 0 Then

Console.WriteLine("SendEmail is marked with the following Conditional attribute(s):")

' Read the properties of individual attributes.

For Each attr As ConditionalAttribute In miAttrs

Console.WriteLine(" <Conditional(""{0}"")>", attr.ConditionString)

Next

End If

Third, you can use an overload of the GetCustomAttributes method exposed by the Assembly,
Module, Type, ParameterInfo, and MemberInfo classes (and all the classes that inherit from it)
that doesn’t take an attribute type as an argument. When you use this overload, the method
returns an array containing all the custom attributes associated with the element:

' Display all the attributes associated with the Person.FirstName field.

Dim fi As FieldInfo = GetType(Person).GetField("FirstName")

Dim fiAttrs As Array = fi.GetCustomAttributes(False)

' Check whether the result contains at least one element.

C18621837.fm Page 746 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 747

If fiAttrs.Length > 0 Then

Console.WriteLine("FirstName is marked with the following attribute(s):")

' Display the name of all attributes (but not their properties).

For Each attr As Attribute In fiAttrs

Console.WriteLine(attr.GetType().FullName)

Next

End If

To further complicate your decision, you can achieve the same results shown previously by
means of static methods of the System.Attribute type:

' Check whether the Person class is marked as serializable.

If Attribute.IsDefined(GetType(Person), GetType(SerializableAttribute)) Then

Console.WriteLine("The Person class is serializable")

End If

' Retrieve the Conditional attributes associated with the Person.SendEmail method,

' including those inherited from the base class.

Dim mi As MethodInfo = GetType(Person).GetMethod("SendEmail")

Dim miAttrs() As ConditionalAttribute = DirectCast(_

Attribute.GetCustomAttributes(mi, GetType(ConditionalAttribute), True),

ConditionalAttribute())

' Check whether the result contains at least one element.

If miAttrs.Length > 0 Then

…

End If

' Display all the attributes associated with the Person.FirstName field.

Dim fi As FieldInfo = GetType(Person).GetField("FirstName")

Dim fiAttrs As Array = Attribute.GetCustomAttributes(fi, False)

' Check whether the result contains at least one element.

If fiAttrs.Length > 0 Then

…

End If

The System.Attribute class also exposes the GetCustomAttribute static method (note the sin-
gular), which returns the only attribute of the specified type:

' Read the Obsolete attribute associated with the Person class, if any.

Dim tyAttr As ObsoleteAttribute = DirectCast(Attribute.GetCustomAttribute(_

GetType(Person), GetType(ObsoleteAttribute)), ObsoleteAttribute)

If tyAttr IsNot Nothing Then

Console.WriteLine("The Person class is marked as obsolete.")

Console.WriteLine(" IsError={0}, Message={1}", tyAttr.IsError, tyAttr.Message)

End If

An important note: you should never use the Attribute.GetCustomAttribute method with
attributes that might appear multiple times—such as the Conditional attribute—because in that
case the method might throw an AmbiguousMatchException object.

All these alternatives are quite confusing, so let me recap when each of them should be used:

If you just need to check whether an attribute is associated with an element, use the
Attribute.IsDefined static method or the IsDefined instance method exposed by the
Assembly, Module, Type, ParameterInfo, and MemberInfo classes. This technique doesn’t
actually instantiate the attribute object in memory and is therefore the fastest of the group.

C18621837.fm Page 747 Friday, December 9, 2005 12:19 PM

748 Part IV: Advanced Topics

If you are checking whether a single-instance attribute is associated with an element and
you want to read the attribute’s fields and properties, use the Attribute.GetCustom-
Attribute static method. (Don’t use this technique with attributes that might appear
multiple times—such as the Conditional attribute—because in that case the method might
throw an AmbiguousMatchException object.)

If you are checking whether a multiple-instance attribute is associated with an element
and you want to read the attribute’s fields and properties, use the Attribute.GetCustom-
Attributes static method or the GetCustomAttributes method exposed by the Assembly,
Module, Type, ParameterInfo, and MemberInfo classes. You must use this technique when
reading all the attributes associated with an element, regardless of the attribute type.

Although all the techniques discussed in this section are available in .NET Framework 1.1
as well, there is a new important change in how you use them to query some special CLR
attributes, such as Serializable, NonSerialized, DllImport, StructLayout, and FieldOffset. To
improve performance and to save space in metadata tables, previous versions of the .NET
Framework stored these special attributes using a format different from all other attributes.
Consequently, you couldn’t reflect on these attributes by using one of the techniques I just
illustrated. Instead, you had to use special properties exposed by other reflection objects,
for example, the IsSerialized and IsLayoutSequential properties of the Type class or the
IsNonSerialized property of the FieldInfo class. A welcome addition in .NET Framework 2.0
is that you don’t need to use any of these properties any longer because all the special .NET
attributes can be queried by means of the IsDefined, GetCustomAttribute, and GetCustom-
Attributes methods described in this section. (However, properties such as IsSerializable and
IsLayoutSequential continue to be supported for backward compatibility.)

The CustomAttributeData Type

Version 1.1 of the .NET Framework has a serious limitation related to custom attributes: you
could search attributes buried in metadata, instantiate them, and read their properties, but
you have no documented means for extracting the exact syntax used in code to define the
attribute. For example, you can’t determine whether an attribute field or property is assigned
in the attribute’s constructor using a standard (mandatory) argument or a named (optional)
argument; if the field or property is equal to its default value (Nothing or zero), you can’t
determine whether it happened because the property was omitted in the attribute’s construc-
tor. For example, these limitations prevent a .NET developer from building a full-featured
object browser.

In addition to this limitation inherited from .NET Framework 1.1, you run into another prob-
lem under .NET Framework 2.0 when you want to extract custom attributes from assemblies
that have been loaded for reflection-only purposes. In fact, both the GetCustomAttribute and
the GetCustomAttributes methods instantiate the custom attribute and therefore would run
some code inside the assembly, which is prohibited.

C18621837.fm Page 748 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 749

Both issues have been resolved by means of the new CustomAttributeData type and the
auxiliary CustomAttributeTypedArgument class (which represents a positional argument in
the attribute’s constructor) and CustomAttributeNamedArgument class (which represents
a named argument).

You create an instance of the CustomAttributeData type by means of the GetCustomAttributes
static method that the type itself exposes. Each CustomAttributeData object has three
properties: Constructor (the ConstructorInfo object that represents the attribute’s constructor
being used), ConstructorArguments (a list of CustomAttributeTypedArgument objects), and
NamedArguments (a list of CustomAttributeNamedArgument objects):

' Retrieve the syntax used in custom attributes for the TestClass type.

Dim attrList As IList(Of CustomAttributeData) = _

CustomAttributeData.GetCustomAttributes(GetType(TestClass))

' Iterate over all the attributes.

For Each attrData As CustomAttributeData In attrList

' Retrieve the attribute's type, by means of the ConstructorInfo object.

Dim attrType As Type = attrData.Constructor.DeclaringType

' Start building the Visual Basic code.

Dim attrString As String = "<" & attrType.FullName & "("

Dim sep As String = ""

' Include all mandatory arguments for this constructor.

For Each typedArg As CustomAttributeTypedArgument In attrData.ConstructorArguments

attrString &= sep & FormatTypedArgument(typedArg)

' A comma is used as the separator for all elements after the first one.

sep = ", "

Next

' Include all optional arguments for this constructor.

For Each namedArg As CustomAttributeNamedArgument In attrData.NamedArguments

' The TypedValue property returns a CustomAttributeTypedArgument object.

Dim typedArg As CustomAttributeTypedArgument = namedArg.TypedValue

' Use the MemberInfo property to retrieve the field or property name.

attrString &= sep & namedArg.MemberInfo.Name & ":=" & FormatTypedArgument(typedArg)

' A comma is used as the separator for all elements after the first one.

sep = ", "

Next

' Complete the attribute syntax and display it.

attrString &= ")>"

Console.WriteLine(attrString)

Next

 The FormatTypedArgument method takes a CustomAttributeTypedArgument object and
returns the corresponding Visual Basic code that can initialize it:

' Return a textual representation of a string, date, or numeric value.

Function FormatTypedArgument(ByVal typedArg As CustomAttributeTypedArgument) As String

If typedArg.ArgumentType Is GetType(String) Then

' It's a quoted string.

Return """" & typedArg.Value.ToString() & """"

C18621837.fm Page 749 Friday, December 9, 2005 12:19 PM

750 Part IV: Advanced Topics

ElseIf typedArg.ArgumentType Is GetType(Date) Then

' It's a Date constant.

Return "#" & typedArg.Value.ToString() & "#"

ElseIf typedArg.ArgumentType.IsEnum Then

' It's an enum value.

Return typedArg.ArgumentType.Name & "." & _

[Enum].GetName(typedArg.ArgumentType, typedArg.Value)

Else

' It's something else (presumably a number).

Return typedArg.Value.ToString()

End If

End Function

Creating a Custom Object Browser

All the reflection properties shown enable you to create a custom object browser that can solve
problems that are out of reach for the object browser included in Visual Studio. Creating a cus-
tom object browser isn’t a trivial task, though, especially if you want to implement a sophisti-
cated user interface. For this reason, in this section I focus on a simple but useful object
browser implemented as a Console application.

The sample application I discuss here is able to display all the types and members in an
assembly that are marked with the Obsolete attribute. I implemented this utility to keep an
updated list of members that are in beta versions of .NET Framework 2.0 but would have been
removed before the release version, as well as members that were present in .NET Framework 1.1
but have been deprecated in the current version. You can pass it the path of an assembly or
launch it without passing anything on the command line: in the latter case, the utility will
analyze all the assemblies in the .NET Framework main directory.

The program displays its results in the console window and takes several minutes to explore
all the assemblies in the .NET Framework, but you can redirect its output to a file and then
load the file in a text editor to quickly search for a type or a method. Here are the core routines:

Imports System.IO

Imports System.Reflection

Imports System.Runtime.InteropServices

Module MainModule

Sub Main(ByVal args() As String)

If args.Length = 0 Then

ShowObsoleteMembers()

Else

ShowObsoleteMembers(args(0))

End If

End Sub

' Process all the assemblies in the .NET Framework directory.

Sub ShowObsoleteMembers()

Dim path As String = RuntimeEnvironment.GetRuntimeDirectory()

For Each asmFile As String In Directory.GetFiles(path, "*.dll")

ShowObsoleteMembers(asmFile)

C18621837.fm Page 750 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 751

Next

End Sub

' Process an assembly at the specified file path.

Sub ShowObsoleteMembers(ByVal asmFile As String)

Try

Dim asm As Assembly = Assembly.LoadFrom(asmFile)

ShowObsoleteMembers(asm)

Catch ex As Exception

' The file isn't a valid assembly.

End Try

End Sub

' Process all the types and members in an assembly.

Sub ShowObsoleteMembers(ByVal asm As Assembly)

Dim attrType As Type = GetType(ObsoleteAttribute)

' This header is displayed only if this assembly contains obsolete members.

Dim asmHeader As String = String.Format("ASSEMBLY {0}{1}", _

asm.GetName().Name, ControlChars.CrLf)

For Each type As Type In asm.GetTypes()

' This header will be displayed only if the type is obsolete or

' contains obsolete members.

Dim typeHeader As String = String.Format(" TYPE {0}{1}", _

GetTypeName(type), ControlChars.CrLf)

' Search the Obsolete attribute at the type level.

Dim attr As ObsoleteAttribute = DirectCast(_

Attribute.GetCustomAttribute(type, attrType), ObsoleteAttribute)

If attr IsNot Nothing Then

' This type is obsolete.

Console.Write(asmHeader & typeHeader)

' Display the message attached to the attribute.

Dim message As String = "WARNING"

If attr.IsError Then message = "ERROR"

Console.WriteLine(" {0}: {1}", message, attr.Message)

' Don't display the assembly header again.

asmHeader = ""

Else

' The type isn't obsolete; let's search for obsolete members.

For Each mi As MemberInfo In type.GetMembers()

attr = DirectCast(Attribute.GetCustomAttribute(mi, _

attrType), ObsoleteAttribute)

If attr IsNot Nothing Then

' This member is obsolete.

Dim memberHeader As String = String.Format(" {0} {1}", _

mi.MemberType.ToString().ToUpper(), GetMemberSyntax(mi))

Console.WriteLine(asmHeader & typeHeader & memberHeader)

' Display the message attached to the attribute.

Dim message As String = "WARNING"

If attr.IsError Then message = "ERROR"

Console.WriteLine(" {0}: {1}", message, attr.Message)

' Don't display the assembly and the type header again.

asmHeader = ""

typeHeader = ""

C18621837.fm Page 751 Friday, December 9, 2005 12:19 PM

752 Part IV: Advanced Topics

End If

Next

End If

Next

End Sub

End Module

The main program uses a few helper routines, for example, to assemble the name of a type or
the signature of a method using Visual Basic syntax. I have explained how this code works in
previous sections, so I won’t do it again here. I have gathered these methods in a separate
module so that you can reuse them easily in other reflection-intensive projects:

Module ReflectionHelpers

' Returns the name of a type. (Supports generics and array types.)

Function GetTypeName(ByVal type As Type) As String

Dim typeName As String = Nothing

Dim suffix As String = ""

' Account for array types.

If type.IsArray Then

suffix = "()"

type = type.GetElementType()

End If

' Account for byref types.

If type.IsByRef Then type = type.GetElementType()

If type.IsGenericTypeDefinition Then

' It's the type definition of an "open" generic type.

typeName = type.FullName

typeName = typeName.Remove(typeName.IndexOf("`"c)) & "(Of "

For Each targ As Type In type.GetGenericArguments()

If targ.GenericParameterPosition > 0 Then typeName &= ","

typeName &= targ.Name

Next

typeName &= ")"

ElseIf type.IsGenericParameter Then

' It's a parameter in an Of clause.

typeName = type.Name

ElseIf type.IsGenericType Then

' This is a generic type that has been bound to specific types.

typeName = type.GetGenericTypeDefinition.FullName

typeName = typeName.Remove(typeName.IndexOf("`"c)) & "(Of "

Dim sep As String = ""

For Each argType As Type In type.GetGenericArguments

typeName &= sep & GetTypeName(argType)

sep = ", "

Next

typeName &= ")"

Else

' This is a regular type.

typeName = type.FullName

End If

Return typeName & suffix

End Function

C18621837.fm Page 752 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 753

' Return the name of a member. (Recognizes constructors and generic methods.)

Public Function GetMemberName(ByVal mi As MemberInfo) As String

Dim memberName As String = mi.Name

Select Case mi.MemberType

Case MemberTypes.Constructor

memberName = "New"

Case MemberTypes.Method

' Account for generic methods.

Dim method As MethodInfo = DirectCast(mi, MethodInfo)

If method.IsGenericMethodDefinition() Then

' Include all type arguments.

memberName &= "(Of "

For Each ty As Type In method.GetGenericArguments()

If ty.GenericParameterPosition > 0 Then memberName &= ","

memberName &= ty.Name

Next

memberName &= ")"

End If

End Select

Return memberName

End Function

' Returns the syntax of a member

Public Function GetMemberSyntax(ByVal member As MemberInfo) As String

Dim memberSyntax As String = GetMemberName(member)

Select Case member.MemberType

Case MemberTypes.Property

Dim pi As PropertyInfo = DirectCast(member, PropertyInfo)

memberSyntax &= GetParametersSyntax(pi.GetGetMethod(True).GetParameters()) _

& " As " & GetTypeName(pi.PropertyType)

Case MemberTypes.Method

Dim mi As MethodInfo = DirectCast(member, MethodInfo)

memberSyntax = memberSyntax & GetParametersSyntax(mi.GetParameters())

If mi.ReturnType.FullName <> "System.Void" Then

memberSyntax &= " As " & GetTypeName(mi.ReturnType)

End If

Case MemberTypes.Constructor

Dim ci As ConstructorInfo = DirectCast(member, ConstructorInfo)

memberSyntax &= memberSyntax & GetParametersSyntax(ci.GetParameters)

Case MemberTypes.Event

Dim ei As EventInfo = DirectCast(member, EventInfo)

Dim mi As MethodInfo = ei.EventHandlerType.GetMethod("Invoke")

memberSyntax &= GetParametersSyntax(mi.GetParameters())

End Select

Return memberSyntax

End Function

' Returns the syntax of an array of parameters.

Private Function GetParametersSyntax(ByVal parInfos() As ParameterInfo) As String

Dim paramSyntax As String = "("

Dim sep As String = ""

For Each pi As ParameterInfo In parInfos

paramSyntax &= sep & GetTypeName(pi.ParameterType)

sep = ", "

C18621837.fm Page 753 Friday, December 9, 2005 12:19 PM

754 Part IV: Advanced Topics

Next

Return paramSyntax & ")"

End Function

End Module

As provided, the utility displays output in a purely textual format. It is easy, however, to
change the argument of String.Format methods so that it outputs XML or HTML text, which
would greatly improve the appearance of the result. (The complete demo program contains
modified versions of this code that outputs HTML and XML text.)

Reflection at Run Time
So far, I’ve shown how to use reflection to enumerate all the types and members in an assem-
bly, an activity that is central to applications such as object browsers or code generators. If you
write mostly business applications, you might object that reflection doesn’t have much to offer
you, but this isn’t correct. In fact, reflection also allows you to actually create objects and
invoke methods in a sort of “late-bound” mode, that is, without you having to burn the type
name and the method name in code. In this section, I show a series of techniques based on
this capability.

Creating an Object Dynamically

Let’s start by seeing how you can instantiate an object given its type name. You can choose
from three ways to create a .NET object using reflection: by using the CreateInstance method
of the System.Activator class, by using the InvokeMember method of the Type class, or by
invoking one of the type’s constructor methods.

If the type has a parameterless constructor, creating an instance is simple:

' Next statement assumes that the Person class is defined in

' an assembly named "MyApp".

Dim type As Type = Assembly.GetExecutingAssembly().GetType("MyApp.Person")

Dim o As Object = Activator.CreateInstance(type)

' Prove that we created a Person.

Console.WriteLine("A {0} object has been created", o.GetType().Name)

To call a constructor that takes one or more parameters, you must prepare an array of values:

' (We reuse the type variable from previous code…)

' Use the constructor that takes two arguments.

Dim args2() As Object = {"Joe", "Evans"}

' Call the constructor that matches the parameter signature.

Dim o2 As Object = Activator.CreateInstance(type, args2)

You can use InvokeMember to create an instance of the class and even pass arguments to its
constructor, as in the following code:

' Prepare the array of parameters.

Dim args3() As Object = {"Joe", "Evans"}

C18621837.fm Page 754 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 755

' Constructor methods have no name and take Nothing in the second to last argument.

Dim o3 As Object = type.InvokeMember("", BindingFlags.CreateInstance, _

Nothing, Nothing, args3)

Creating an object through its constructor method is a bit more convoluted, but I’ll demon-
strate the technique here for the sake of completeness:

' Prepare the argument signature as an array of types (two strings).

Dim argTypes() As Type = {GetType(String), GetType(String)}

' Get a reference to the correct constructor.

Dim ci As ConstructorInfo = type.GetConstructor(argTypes)

' Prepare the parameters.

Dim args4() As Object = {"Joe", "Evans"}

' Invoke the constructor and assign the result to a variable.

Dim o4 As Object = ci.Invoke(args4)

Regardless of the technique you used to create an instance of the type, you usually assign the
instance you’ve created to an Object variable, as opposed to a strongly typed variable. (If you
knew the name of the type at compile time, you wouldn’t need to use reflection in the first
place.) There is only one relevant exception to this rule: when you know in advance that the
type being instantiated derives from a specific base class (or implements a given interface),
you can cast the Object variable to a variable typed after that base class (or interface) and
access all the members that the object inherits from the base class (or interface).

The new MakeArrayType method of the Type class makes it very simple to instantiate arrays
using reflection, as you can see in this code:

' Create an array of Double. (You can pass an integer argument to the MakeArrayType

' method to specify the rank of the array, for multidimensional arrays.

Dim arrType As Type = GetType(Double).MakeArrayType()

' The new array has 10 elements.

Dim arr As Array = DirectCast(Activator.CreateInstance(arrType, 10), Array)

' Prove that an array of 10 elements has been created.

Console.WriteLine("{0} {1} elements", arr.Length, arr.GetValue(0).GetType.Name)

When you work with an array created using reflection, you typically assign its elements with
the SetValue method and read them back with the GetValue method:

' Assign the first element and read it back.

arr.SetValue(123.45, 0)

Console.WriteLine(arr.GetValue(0)) ' => 123.45

Accessing Members

In the most general case, after you’ve created an instance by using reflection, all you have is
an Object variable pointing to a type and no direct way to access one of its members. The
easiest operation you can perform is reading or writing a field by means of the GetValue and
SetValue methods of the FieldInfo object:

' Create a Person object and reflect on it.

Dim type As Type = Assembly.GetExecutingAssembly().GetType("MyApp.Person")

C18621837.fm Page 755 Friday, December 9, 2005 12:19 PM

756 Part IV: Advanced Topics

Dim args() As Object = {"Joe", "Evans"}

Dim o As Object = Activator.CreateInstance(type, args)

' Get a reference to its FirstName field.

Dim fi As FieldInfo = type.GetField("FirstName")

' Display its current value, and then change it.

Console.WriteLine(fi.GetValue(o)) ' => Joe

fi.SetValue(o, "Robert")

' Prove that it changed, by casting to a strong-type variable.

Dim pers As Person = DirectCast(o, Person)

Console.WriteLine(pers.FirstName) ' => Robert

Like FieldInfo, the PropertyInfo type exposes the GetValue and SetValue methods, but prop-
erties can take arguments, and thus these methods take an array of arguments. You must pass
Nothing in the second argument if you’re calling parameterless properties.

' (Continuing previous example…)

' This code assumes that the Person type exposes a 16-bit Age property.

' Get a reference to the PropertyInfo object.

Dim pi As PropertyInfo = type.GetProperty("Age")

' Note that the type of value must match exactly.

' (Integer constants must be converted to Short, in this case.)

pi.SetValue(pers, 35S, Nothing)

' Read it back.

Console.WriteLine(pi.GetValue(pers, Nothing)) ' => 35

If the property takes one or more arguments, you must pass an Object array containing one
element for each argument:

' Get a reference to the PropertyInfo object.

Dim pi2 As PropertyInfo = type.GetProperty("Notes")

' Prepare the array of parameters.

Dim args2() As Object = {1}

' Set the property.

pi2.SetValue(o, "Tell John about the briefing", args2)

' Read it back.

Console.WriteLine(pi2.GetValue(o, args2))

A similar thing happens when you’re invoking methods, except that you use the Invoke
method instead of GetValue or SetValue:

' Get the MethodInfo for this method.

Dim mi As MethodInfo = type.GetMethod("SendEmail")

' Prepare an array for expected arguments.

Dim arguments() As Object = {"This is a message", 3}

' Invoke the method.

mi.Invoke(o, arguments)

Things are more interesting when optional arguments are involved. In this case, you pass the
Type.Missing special value, as in this code:

' …(Initial code as above)…

' Don't pass the second argument (optional).

C18621837.fm Page 756 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 757

arguments = New Object() {"This is a message", type.Missing}

mi.Invoke(o, arguments)' Don't pass the second argument.

Alternatively, you can query the DefaultValue property of corresponding ParameterInfo to
learn the default value for that specific argument:

' …(Initial code as above)…

' Retrieve the DefaultValue from the ParameterInfo object.

arguments = New Object() {"This is a message", mi.GetParameters(1).DefaultValue}

mi.Invoke(o, arguments)

The Invoke method traps all the exceptions thrown in the called method and converts them
into TargetInvocationException; you must check the InnerException property of the caught
exception to retrieve the real exception:

Try

mi.Invoke(o, arguments)

Catch ex As TargetInvocationException

Console.WriteLine(ex.InnerException.Message)

Catch ex As Exception

Console.WriteLine(ex.Message)

End Try

The InvokeMember Method

In some cases, you might find it easier to set properties dynamically and invoke methods
by means of the Type object’s InvokeMember method. This method takes the name of the
member; a flag that says whether it’s a field, property, or method; the object for which
the member should be invoked; and an array of Objects for the arguments if there are any.
Here are a few examples:

' Create an instance of the Person type using InvokeMember.

Dim type As Type = Assembly.GetExecutingAssembly().GetType("MyApp.Person")

Dim arguments() As Object = {"John", "Evans"}

Dim obj As Object = type.InvokeMember("", BindingFlags.CreateInstance,_

Nothing, Nothing, arguments)

' Set the FirstName field.

Dim args() As Object = {"Francesco"} ' One argument

type.InvokeMember("FirstName", BindingFlags.SetField, Nothing, obj, args)

' Read the FirstName field. (Pass Nothing for the argument array.)

Dim value As Object = type.InvokeMember("FirstName", BindingFlags.GetField, _

Nothing, obj, Nothing)

' Set the Age property, create the argument array on the fly.

type.InvokeMember("Age", BindingFlags.SetProperty, Nothing, obj, _

New Object() {35S})

' Call the SendEMail method.

Dim args2() As Object = {"This is a message", 2}

type.InvokeMember("SendEmail", BindingFlags.InvokeMethod, Nothing, obj, args2)

C18621837.fm Page 757 Friday, December 9, 2005 12:19 PM

758 Part IV: Advanced Topics

It is very important that you pass the correct value for the BindingFlags argument. All
the examples shown so far access public instance members, but you must explicitly add the
NonPublic and/or Static modifiers if the member is private or static:

' Read the m_Age private field.

value = type.InvokeMember("m_Age", BindingFlags.GetField Or BindingFlags.NonPublic _

Or BindingFlags.Instance, Nothing, obj, Nothing)

When you invoke a static member, you must pass Nothing in the second to last argument. The
same rule applies when you use InvokeMember to call a constructor method because you
don’t yet have a valid instance in that case.

The InvokeMember method does a case-sensitive search for the member with the specified
name, but it’s quite forgiving when it matches the type of the arguments because it will per-
form any necessary conversion for you if the types don’t correspond exactly. You can change
this default behavior by means of the BindingFlags.IgnoreCase (for case-insensitive searches)
and the BindingFlags.ExactBinding (for exact type matches) values.

InvokeMember works correctly if one or more arguments are passed by reference. For
example, if the SendEmail method would take the priority in a ByRef argument, on return
from the method call the args2(1) element would contain the new value assigned to that
argument.

Even though InvokeMember can make your code more concise—because you don’t have
to get a reference to a specific FieldInfo, PropertyInfo, or MethodInfo object—it surely
doesn’t make your code faster. In fact, the InvokeMember method must perform two dis-
tinct operations internally: the discovery phase (looking for the member with the specified
signature) and the execution phase. If you use InvokeMember to call the same method a
hundred times, it will “rediscover” the same method a hundred times, which clearly adds
overhead that you can avoid if you reflect on the member once and then access the member
through a FieldInfo, PropertyInfo, or MethodInfo object. For this reason, you shouldn’t
use InvokeMember when repeatedly accessing the same member, especially in time-critical
code.

Creating a Universal Comparer

As you might recall from Chapter 10, “Interfaces,” you implement the IComparer interface
in auxiliary classes that work as comparers for other types, whether they are .NET types or
custom types you’ve defined. The main problem with comparer types is that you must define
a distinct comparer type for each possible sort criterion. Clearly, this requirement can soon
become a nuisance. Reflection gives you the opportunity to implement a universal comparer, a
class capable of working with any type of object and any combination of fields and properties
and that supports both ascending and descending sorts.

C18621837.fm Page 758 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 759

Before discussing how the UniversalComparer type works, let me show you how you can use
it. You create a UniversalComparer instance by passing its constructor a string argument that
resembles an ORDER BY clause in SQL.

Dim persons() As Person = Nothing

' Init the array here.

…

' Sort the array on the LastName and FirstName fields.

Dim comp As New UniversalComparer(Of Person)("LastName, FirstName ")

Array.Sort(Of Person)(persons, comp)

You can even sort in descending mode separately on each field:

Dim comp As New UniversalComparer(Of Person)("LastName DESC, FirstName DESC")

Array.Sort(Of Person)(persons, comp)

Not surprisingly, the UniversalComparer class relies heavily on reflection to perform its
magic. Here’s its complete source code:

Public Class UniversalComparer(Of T)

Implements IComparer, IComparer(Of T)

Private sortKeys() As SortKey

Public Sub New(ByVal sort As String)

Dim type As Type = GetType(T)

' Split the list of properties.

Dim props() As String = sort.Split(","c)

' Prepare the array that holds information on sort criteria.

ReDim sortKeys(props.Length - 1)

' Parse the sort string.

For i As Integer = 0 To props.Length - 1

' Get the Nth member name.

Dim memberName As String = props(i).Trim()

If memberName.ToLower().EndsWith(" desc") Then

' Discard the DESC qualifier.

sortKeys(i).Descending = True

memberName = memberName.Remove(memberName.Length - 5).TrimEnd()

End If

' Search for a field or a property with this name.

sortKeys(i).FieldInfo = type.GetField(memberName)

If sortKeys(i).FieldInfo Is Nothing Then

sortKeys(i).PropertyInfo = type.GetProperty(memberName)

End If

Next

End Sub

' Implementation of IComparer.Compare

Public Function Compare(ByVal o1 As Object, ByVal o2 As Object) As Integer _

Implements IComparer.Compare

Return Compare(CType(o1, T), CType(o2, T))

End Function

C18621837.fm Page 759 Friday, December 9, 2005 12:19 PM

760 Part IV: Advanced Topics

' Implementation of IComparer(Of T).Compare

Public Function Compare(ByVal o1 As T, ByVal o2 As T) As Integer _

Implements IComparer(Of T).Compare

' Deal with simplest cases first.

If o1 Is Nothing Then

' Two null objects are equal.

If o2 Is Nothing Then Return 0

' A null object is less than any non-null object.

Return -1

ElseIf o2 Is Nothing Then

' Any non-null object is greater than a null object.

Return 1

End If

' Iterate over all the sort keys.

For i As Integer = 0 To sortKeys.Length - 1

Dim value1 As Object, value2 As Object

Dim sortKey As SortKey = sortKeys(i)

' Read either the field or the property.

If sortKey.FieldInfo IsNot Nothing Then

value1 = sortKey.FieldInfo.GetValue(o1)

value2 = sortKey.FieldInfo.GetValue(o2)

Else

value1 = sortKey.PropertyInfo.GetValue(o1, Nothing)

value2 = sortKey.PropertyInfo.GetValue(o2, Nothing)

End If

Dim res As Integer

If value1 Is Nothing And value2 Is Nothing Then

' Two null objects are equal.

res = 0

ElseIf value1 Is Nothing Then

' A null object is always less than a non-null object.

res = -1

ElseIf value2 Is Nothing Then

' Any object is greater than a null object.

res = 1

Else

' Compare the two values, assuming that they support IComparable.

res = DirectCast(value1, IComparable).CompareTo(value2)

End If

' If values are different, return this value to caller.

If res <> 0 Then

' Negate it if sort direction is descending.

If sortKey.Descending Then res = -res

Return res

End If

Next

' If we get here, the two objects are equal.

Return 0

End Function

' Nested type to store detail on sort keys

Private Structure SortKey

Public FieldInfo As FieldInfo

C18621837.fm Page 760 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 761

Public PropertyInfo As PropertyInfo

' True if sort is descending.

Public Descending As Boolean

End Structure

End Class

As the comments in the source code explain, the universal comparer supports comparisons
on both fields and properties. Because this class uses reflection intensively, it isn’t as fast as
a more specific comparer can be, but in most cases the speed difference isn’t noticeable.

Dynamic Registration of Event Handlers

Another programming technique you can implement through reflection is the dynamic regis-
tration of an event handler. For example, let’s say that the Person class exposes a GotEmail
event and you have an event handler in the MainModule type:

Public Class Person

Event GotEmail(ByVal sender As Object, ByVal e As EventArgs)

…

' A method that fires the GotEmail event

Sub SendEmail(ByVal text As String, Optional ByVal priority As Integer = 1)

…

Dim e As New GotEmailEventArgs(text, priority)

RaiseEvent GotEmail(Me, e)

End Sub

End Class

Module MainModule

Sub GotEmail_Handler(ByVal sender As Object, ByVal e As GotEmailEventArgs)

Console.WriteLine("GotEmail event fired")

End Sub

…

End Module

Here’s the code that registers the procedure for this event, using reflection exclusively:

' obj and type initialized as in previous examples…

' Get a reference to the GotEmail event.

Dim ei As EventInfo = type.GetEvent("GotEmail")

' Get a reference to the delegate that defines the event.

Dim handlerType As Type = ei.EventHandlerType

' Create a delegate of this type that points to a method in this module.

Dim handler As [Delegate] = [Delegate].CreateDelegate(_

handlerType, GetType(MainModule), "GotEmail_Handler")

' Register this handler dynamically.

ei.AddEventHandler(obj, handler)

' Call the method that fires the event, using reflection.

Dim args() as Object = {"Hello Joe", 2}

Type.InvokeMember("SendEmail", BindingFlags.InvokeMethod, Nothing, obj, args)

A look at the console window proves that the EventHandler procedure in the MainModule
type was invoked when the code in the Person.SendEmail method raised the GotEmail event.
If the event handler is an instance method, the second argument to the Delegate.CreateDelegate

C18621837.fm Page 761 Friday, December 9, 2005 12:19 PM

762 Part IV: Advanced Topics

method must be an instance of the class that defines the method; if the event handler is a
static method (as in the previous example), this argument must be a Type object correspond-
ing to the class where the method is defined.

The previous code doesn’t really add much to what you can do by registering an event by
means of the AddHandler operator. But wait, there’s more. To show how this technique can be
so powerful, I must make a short digression on delegates.

Delegate Covariance and Contravariance in C# 2.0

.NET Framework 2.0 has enhanced delegates with two important features: covariance and
contravariance. Unfortunately, however, these features are available only in C#, and therefore
I am forced to illustrate these concepts in that language.

Both these features relax the requirement that a delegate object must match exactly the signa-
ture of its target method. More specifically, delegate covariance means that you can have a
delegate point to a method with a return value that inherits from the return type specified by
the delegate. Let’s say we have the following delegate:

// A delegate that can point to a method that takes a TextBox and returns an object.

delegate object GetControlData(TextBox ctrl);

The GetControlData delegate specifies object as the return value; therefore, the covariance
property tells that this delegate can point to any method that takes a TextBox control, regard-
less of the method’s return value, because all .NET types inherit from System.Object. The only
requirement is that the method actually returns something; therefore, you can’t have this
delegate point to a C# void method (a Sub method, in Visual Basic parlance). For example, a
GetControlData delegate might point to the following method because the String type inherits
from System.Object:

// A function that takes a TextBox control and returns a String

string GetText(TextBox ctrl)

{ return ctrl.Text; }

Delegate contravariance means that a delegate can point to a method with an argument that is
a base class of the argument specified in the delegate’s signature. For example, a GetControl-
Data delegate might point to a method that takes one argument of the Control or Object
type because both these types are base classes for the TextBox argument that appears in the
delegate:

// A function that takes a Control and returns an Object value.

object GetTag(Control ctrl)

{ return ctrl.Tag; }

It’s important to realize that covariance and contravariance relax the constraint that a delegate
can point only to a method with a signature that doesn’t exactly match the delegate’s signa-
ture, but they don’t make the code less robust because no type mismatch exception can occur
at run time.

C18621837.fm Page 762 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 763

Delegate Covariance and Contravariance in Visual Basic 2005

Don’t look for delegate covariance and contravariance in Visual Basic documentation because
you won’t find any information. As a matter of fact, Visual Basic 2005 doesn’t support these
features. Period.

Well, not exactly. Granted, Visual Basic doesn’t support these features directly, but you can
achieve them nevertheless. Covariance and contravariance are supported at the CLR level,
and you can create a delegate that leverages both of them through reflection. Let’s say you
have the following delegate and the following method in a Windows Forms class:

Delegate Function GetControlData(ByVal ctrl As TextBox) As Object

Function GetText(ByVal ctrl As Control) As String

Return ctrl.Text

End Function

You know that you can’t create a GetControlData delegate that points to the GetText method
directly in Visual Basic because the language supports neither covariance nor contravariance.
However, you can create a MethodInfo object that points to the GetText method and then
pass this object to the Delegate.CreateDelegate static method:

' The target method

Dim method As MethodInfo = Me.GetType().GetMethod("GetText")

' Build the delegate through reflection.

Dim deleg As GetControlData = DirectCast([Delegate].CreateDelegate(_

GetType(GetControlData), Me, method), GetControlData)

' Show that the delegate works correctly.

Console.WriteLine(deleg(Me.TextBox1)) ' Displays the TextBox1.Text property.

This code is only marginally slower than the C# counterpart, but this isn’t a serious issue
because you typically create a delegate once and use it repeatedly.

The most interesting application of this feature is the ability to have an individual method
handle all the events coming from one or more objects, provided that the event has the
canonical .NET syntax (sender, e), where the second argument can be any type that derives
from EventArgs. Consider the following event handler:

' (Inside a Form class)

Sub MyEventHandler(ByVal sender As Object, ByVal e As EventArgs)

Console.WriteLine("An event has fired")

End Sub

The following code can make all the events exposed by an object point to the “universal
handler”:

' (Inside the same Form class…)

' The control we want to trap events from

Dim ctrl As Object = TextBox1

For Each ei As EventInfo In ctrl.GetType().GetEvents()

Dim handlerType As Type = ei.EventHandlerType

C18621837.fm Page 763 Friday, December 9, 2005 12:19 PM

764 Part IV: Advanced Topics

' The universal event handler method

Dim method As MethodInfo = Me.GetType().GetMethod("MyEventHandler")

' Leverage contravariance to create a delegate that points to the method.

Dim handler As [Delegate] = [Delegate].CreateDelegate(handlerType, Me, method)

' Use reflection to register the event.

ei.AddEventHandler(ctrl, handler)

Next

' Prove that it works by causing a TextChanged event.

ctrl.Text &= "*"

This code proves that it is technically possible to use reflection to have all the events of an
object point to an individual handler, but this technique doesn’t look very promising. After all,
the MyEventHandler method has no means to understand which event was fired. To get that
information, we need to do more.

A Universal Event Handler

What we need is an object that is able to “mediate” between the event source and the object
where the event is handled. Writing this object requires some significant code, but the result
is well worth the effort. The EventInterceptor class exposes only one event, ObjectEvent,
defined by the ObjectEventHandler delegate:

Public Delegate Sub ObjectEventHandler(ByVal sender As Object, ByVal e As ObjectEventArgs)

Public Class EventInterceptor

' The public event

Public Event ObjectEvent As ObjectEventHandler

' This is invoked from inside the EventInterceptorHandler auxiliary class.

Protected Sub OnObjectEvent(ByVal e As ObjectEventArgs)

RaiseEvent ObjectEvent(Me, e)

End Sub

…

End Class

The EventInterceptor class uses the nested EventInterceptorHandler type to trap events com-
ing from the object source. More precisely, an EventInterceptorHandler instance is created for
each event that the event source can raise. The EventInterceptor class supports multiple event
sources; therefore, the number of EventInterceptorHandler instances can be quite high: for
example, if you trap the events coming from 20 TextBox controls, the EventInterceptor object
will create as many as 1,540 EventInterceptorHandler instances because each TextBox control
exposes 77 events. For this reason, the AddEventSource method supports a third argument
that enables you to specify which events should be intercepted:

Public Sub AddEventSource(ByVal eventSource As Object, _

ByVal includeChildren As Boolean, ByVal filterPattern As String)

For Each ei As EventInfo In eventSource.GetType().GetEvents()

' Skip this event if its name doesn't match the pattern.

If Not String.IsNullOrEmpty(filterPattern) AndAlso Not _

Regex.IsMatch(ei.Name, "^" & filterPattern & "$") Then Continue For

' Get the signature of the underlying delegate.

C18621837.fm Page 764 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 765

Dim mi As MethodInfo = ei.EventHandlerType.GetMethod("Invoke")

Dim pars() As ParameterInfo = mi.GetParameters()

' Check that event signature is in the form (sender, e).

If mi.ReturnType.FullName = "System.Void" AndAlso pars.Length = 2 _

AndAlso pars(0).ParameterType Is GetType(Object) AndAlso _

GetType(EventArgs).IsAssignableFrom(pars(1).ParameterType) Then

' Create an EventInterceptorHandler that handles this event.

Dim interceptor As New EventInterceptorHandler(eventSource, ei, Me)

End If

Next

' Recurse on child controls if so required.

If TypeOf eventSource Is Control AndAlso includeChildren Then

For Each ctrl As Control In DirectCast(eventSource, Control).Controls

AddEventSource(ctrl, includeChildren, filterPattern)

Next

End If

End Sub

…

End Class ' End of EventInterceptor class

The EventInterceptorHandler nested class does a very simple job: it uses reflection to register
its EventHandler method as a listener for the specified event coming from the specified event
source. When the event is fired, the EventHandler method calls back the OnObjectEvent
method in the parent EventInterceptor object, which in turn fires the ObjectEvent event:

Private Class EventInterceptorHandler

' The event being intercepted

Public ReadOnly EventInfo As EventInfo

' The parent EventInterceptor

Public ReadOnly Parent As EventInterceptor

Public Sub New(ByVal eventSource As Object, ByVal eventInfo As EventInfo, _

ByVal parent As EventInterceptor)

Me.EventInfo = eventInfo

Me.Parent = parent

' Create a delegate that points to the EventHandler method.

Dim method As MethodInfo = Me.GetType().GetMethod("EventHandler")

Dim handler As [Delegate] = _

[Delegate].CreateDelegate(eventInfo.EventHandlerType, Me, method)

' Register the event.

eventInfo.AddEventHandler(eventSource, handler)

End Sub

Public Sub EventHandler(ByVal sender As Object, ByVal e As EventArgs)

' Notify the parent EventInterceptor object.

Dim objEv As New ObjectEventArgs(sender, EventInfo.Name, e)

Parent.OnObjectEvent(objEv)

End Sub

End Class

Here’s how a Windows Forms application can use the EventInterceptor object to get a notifi-
cation when any event of any control fires:

Dim WithEvents Interceptor As New EventInterceptor

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs) Handles MyBase.Load

C18621837.fm Page 765 Friday, December 9, 2005 12:19 PM

766 Part IV: Advanced Topics

Interceptor.AddEventSource(Me, True, "")

End Sub

Private Sub Interceptor_ObjectEvent(ByVal sender As Object, ByVal e As ObjectEventArgs) _

Handles Interceptor.ObjectEvent

Dim msg As String = String.Format("Event {0} from control {1}", _

DirectCast(e.EventSource, Control).Name, e.EventName)

Debug.WriteLine(msg)

End Sub

You can limit the number of events that you receive by passing a regular expression pattern to
the AddEventSource method:

' Trap only xxxChanged events.

Interceptor.AddEventSource(Me, True, ".+Changed")

' Trap only mouse and keyboard events.

Interceptor.AddEventSource(Me, True, "(Mouse|Key).+)")

For more information, see the source code of the complete demo program. (See Figure 18-2.)

Figure 18-2 The EventInterceptor demo application

Scheduling a Sequence of Actions

Reflection allows you to implement techniques that would be very difficult (and sometimes
impossible) to implement using a more traditional approach. For example, the ability to
invoke methods through MethodInfo objects gives you the ability to deal with call sequences
as if they were just another data type that your application processes. To see what I mean, let’s
say that your application must perform a series of actions—for example, file creation, registry
manipulation, variable assignments—as an atomic operation. If any one of the involved actions
fails, all the actions performed so far should be undone in an orderly manner: files should be
deleted, registry keys should be restored, variables should be assigned their original value,
and so forth.

Implementing an undo strategy in the most general case isn’t a simple task, especially if some
of the actions are performed only conditionally when other conditions are met. What you
need is a generic solution to this problem, and you’ll see how elegantly you can solve this

C18621837.fm Page 766 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 767

programming task through reflection. To begin with, let’s define an Action class, which
represents a method—either a static or an instance method:

Public Class Action

Public ReadOnly Message As String ' Description of the action

Public ReadOnly [Object] As Object ' Instance on which the method is called

Public ReadOnly Method As MethodInfo ' The method to be invoked

Public ReadOnly Arguments() As Object ' Arguments for the method

' Second argument can be an object (for instance methods) or a Type (for static methods).

Public Sub New(ByVal message As String, ByVal obj As Object, _

ByVal methodName As String, ByVal ParamArray arguments() As Object)

Me.Message = message

Me.Arguments = arguments

' Determine the type this method belongs to.

Dim type As Type = TryCast(obj, Type)

If type Is Nothing Then

Me.Object = obj

type = obj.GetType()

End If

' Prepare the list of argument types, to call GetMethod without any ambiguity.

Dim argTypes(arguments.Length - 1) As Type

For index As Integer = 0 To arguments.Length - 1

If arguments(index) IsNot Nothing Then

argTypes(index) = arguments(index).GetType()

End If

Next

' Retrieve the actual MethodInfo object, throw an exception if not found.

Me.Method = type.GetMethod(methodName, argTypes)

If Me.Method Is Nothing Then

Throw New ArgumentException("Missing method")

End If

End Sub

' Execute this method.

Public Sub Execute()

Me.Method.Invoke(Me.Object, Me.Arguments)

End Sub

End Class

Instead of performing a method directly, you can create an Action instance and then invoke its
Execute method:

' Create c:\backup directory.

Dim act As New Action("Create c:\backup directory", _

GetType(Directory), "CreateDirectory", "c:\backup")

act.Execute()

Of course, executing a method in this way doesn’t bring any benefit. You see the power of this
technique, however, if you define another type that works as a container for Action instances
and that can also remember the “undo” action for each method being executed:

Public Class ActionSequence

' The parallel lists of actions and undo actions

Private Actions As New List(Of Action)

C18621837.fm Page 767 Friday, December 9, 2005 12:19 PM

768 Part IV: Advanced Topics

Private UndoActions As New List(Of Action)

' This delegate must point to a method that takes a string.

Private DisplayMethod As Action(Of String)

' The constructor takes a delegate to a method that can output a message.

Public Sub New(ByVal displayMethod As Action(Of String))

Me.DisplayMethod = displayMethod

End Sub

' Add an action and an undo action to the list.

Public Sub Add(ByVal action As Action, ByVal undoAction As Action)

Actions.Add(action)

UndoActions.Add(undoAction)

End Sub

' Insert an action and an undo action at a specific index in the list.

Public Sub Insert(ByVal index As Integer, ByVal action As Action, ByVal undoAction As Action)

Actions.Insert(index, action)

UndoActions.Insert(index, undoAction)

End Sub

' Execute all pending actions, return true if no exception occurred.

Public Function Execute(ByVal ignoreExceptions As Boolean) As Boolean

' This is the list of undo actions to execute in case of error.

Dim undoSequence As New ActionSequence(Me.DisplayMethod)

For index As Integer = 0 To Actions.Count - 1

Dim act As Action = Actions(index)

' Skip over null actions.

If act Is Nothing Then Continue For

Try

' Display the message and execute the action.

DisplayMessage(act.Message)

act.Execute()

' If successful, remember the undo action. The undo action is placed

' in front of all others so that it will be the first to be executed in case of error.

undoSequence.Insert(0, UndoActions(index), Nothing)

Catch ex As TargetInvocationException

' Ignore exceptions if so required.

If ignoreExceptions Then Continue For

' Display the error message.

DisplayMessage("ERROR: " & ex.InnerException.Message)

' Perform the undo sequence. (Ignore exceptions while undoing.)

DisplayMessage("UNDOING OPERATIONS...")

undoSequence.Execute(True)

' Signal that an exception occurred.

Return False

End Try

Next

' Signal that no exceptions occurred.

Return True

End Function

' Report a message through the delegate passed to the constructor.

Private Sub DisplayMessage(ByVal text As String)

C18621837.fm Page 768 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 769

If Me.DisplayMethod IsNot Nothing Then

Me.DisplayMethod(text)

End If

End Sub

End Class

The constructor of the ActionSequence type takes an Action(Of String) object, which is a
delegate to a Sub method that takes a string as an argument. This method will be used to dis-
play all the messages that are produced during the action sequence: it can point to a method
such as the Console.WriteLine method (to display messages in the console window), the
WriteLine method of a StreamWriter object (to write messages to a log file), the AppendText
method of a TextBox control (to display messages inside a TextBox control), or a method you
define in your application:

' Prepare to write diagnostic messages to a log file.

Dim sw As New StreamWriter("c:\logfile.txt")

Dim actionSequence As New ActionSequence(AddressOf sw.WriteLine)

…

' Close the stream when you're done with the ActionSequence object.

sw.Close()

The following code shows how you can schedule a sequence of actions and undo them if an
exception is thrown during the process:

' Schedule the creation of c:\backup directory.

Dim actionSequence As New ActionSequence(AddressOf Console.WriteLine)

Dim act As New Action("Create c:\backup directory", GetType(Directory), _

"CreateDirectory", "c:\backup")

Dim undoAct As New Action("Delete c:\backup directory", GetType(Directory), _

"Delete", "c:\backup", True)

actionSequence.Add(act, undoAct)

' Create a readme.txt file in the c:\ root directory.

Dim contents As String = "Instructions for myapp.exe..."

act = New Action("Create the c:\myapp_readme.txt", GetType(File), _

"WriteAllText", "c:\myapp_readme.txt", contents)

' Notice that this action has no undo action.

actionSequence.Add(act, Nothing)

' Move the readme file to the backup directory.

act = New Action("Move the c:\myapp_readme.txt to c:\backup\readme.txt", GetType(File), _

"Move", "c:\myapp_readme.txt", "c:\backup\readme.txt")

undoAct = New Action("Move c:\backup\readme.txt to c:\myapp_readme.txt", GetType(File), _

"Move", "c:\backup\readme.txt", "c:\myapp_readme.txt")

actionSequence.Add(act, undoAct)

' Execute the action sequence. (False means that an exception undoes all actions.)

actionSequence.Execute(False)

After running the previous code snippet, you should find a new c:\backup directory contain-
ing the files readme.txt and win.ini. To see how the ActionSequence type behaves in case of

C18621837.fm Page 769 Friday, December 9, 2005 12:19 PM

770 Part IV: Advanced Topics

error, delete the c:\backup directory and intentionally cause an error in the sequence by
attempting to copy a file that doesn’t exist:

' (Insert the lines in bold type before the call to the Execute method.)

…

' Copy the c:\missing.txt file to the c:\backup directory.

act = New Action("Copy c:\missing.txt to c:\backup", GetType(File), _

"Copy", "c:\missing.text", "c:\backup\missing.txt")

undoAct = New Action("Delete c:\backup\missing.text", GetType(File), _

"Delete", "c:\backup\missing.text")

actionSequence.Add(act, Nothing)

' Execute the action sequence. (False means that an exception undoes all actions.)

actionSequence.Execute(False)

The intentional error causes the ActionSequence object to undo all the actions before the one
that caused the exception, and in fact at the end of the process you won’t find any c:\backup
directory, as confirmed by the text that appears in the console window:

Create c:\backup directory

Create the c:\myapp_readme.txt

Move the c:\myapp_readme.txt to c:\backup\readme.txt

Copy c:\missing.txt to c:\backup

ERROR: Could not find file 'c:\missing.text'.

UNDOING OPERATIONS...

Move the c:\backup\readme.txt file back to c:\myapp_readme.txt

Delete c:\backup directory

In this example, I used the ActionSequence type to undo a sequence of actions that are hard-
coded in the program, but I could have used a similar technique to implement an Undo menu
command in your applications. Or I could have read the series of actions from a file instead,
to implement undoable scripts.

You can expand the ActionSequence type with new features. For example, you might have the
series of actions be performed on a background thread (see Chapter 20, “Threads,” for more
information) and specify multiple undo methods for a given action. You might add properties
to the Action type to specify whether a failed method should abort the entire sequence. Also,
you might extend the Action class with the ability to create new instances (that is, to call
constructors in addition to regular methods) and to pass instances created in this way as
arguments to other methods down in the action sequence. As usual, the only limit is your
imagination.

On-the-Fly Compilation

Earlier in this chapter, I mentioned the System.Reflection.Emit namespace, which has classes
that let you create an assembly on the fly. The .NET Framework uses these classes internally
in a few cases—for example, when you pass the RegexOptions.Compiled option to the con-
structor of the Regex object (see Chapter 14, “Regular Expressions”). Using reflection emit,
however, isn’t exactly the easiest .NET programming task, and I’m glad I’ve never had to use
it heavily in a real-world application.

C18621837.fm Page 770 Friday, December 9, 2005 8:53 PM

Chapter 18: Reflection 771

Nevertheless, at times the ability to create an assembly out of thin air can be quite tantalizing
because it opens up a number of programming techniques that are otherwise impossible. For
example, consider building a routine that takes a math expression entered by the end user
(as a string), evaluates it, and returns the result. In the section titled “Parsing and Evaluating
Expressions” in Chapter 14, I showed how you can parse and evaluate an expression at run time,
but that approach is several orders of magnitude slower than evaluating a compiled expression is
and can’t be used in time-critical code, such as for doing function plotting or finding the roots of
a higher-degree equation (see Figure 18-3). In this case, your best option is to generate the source
code of a Visual Basic program, compile it on the fly, and then instantiate one of its classes.

Figure 18-3 The demo application, which uses on-the-fly compilation to evaluate functions and
find the roots of any equation that uses the X variable

The types that allow us to compile an assembly at run time are in the Microsoft.VisualBasic
namespace (or in the Microsoft.CSharp namespace, if you want to generate and compile C#
source code) and in the System.CodeDom.Compiler namespace, so you need to add proper
Imports statements to your code to run the code samples that follow.

The first thing to do is generate the source code for the program to be compiled dynamically.
In the expression evaluator demo application, such source code is obtained by inserting the
expression that the end user enters in the txtExpression field in the middle of the Eval
method of an Evaluator public class:

Dim source As String = String.Format(_

"Imports Microsoft.VisualBasic{0}" _

& "Imports System.Math{0}" _

& "Public Class Evaluator{0}" _

& " Public Function Eval(ByVal x As Double) As Double{0}" _

& " Return {1}{0}" _

& " End Function{0}" _

& "End Class{0}", _

ControlChars.CrLf, txtExpression.Text)

Next, you create a CompilerParameters object (in the System.CodeDom.Compiler namespace)
and set its properties; this object broadly corresponds to the options you’d pass to the VBC
command-line compiler:

Dim params As New CompilerParameters

' Generate a DLL, not an EXE executable.

' (Not really necessary because False is the default.)

params.GenerateExecutable = False

C18621837.fm Page 771 Friday, December 9, 2005 12:19 PM

772 Part IV: Advanced Topics

#If DEBUG Then

' Include debug information.

params.IncludeDebugInformation = True

' Debugging works if we generate an actual DLL and keep temporary files.

params.TempFiles.KeepFiles = True

params.GenerateInMemory = False

#Else

' Treat warnings as errors, don't keep temporary source files.

params.TreatWarningsAsErrors = True

params.TempFiles.KeepFiles = False

' Optimize the code for faster execution.

params.CompilerOptions = "/Optimize+"

' Generate the assembly in memory.

params.GenerateInMemory = True

#End If

' Add a reference to necessary strong-named assemblies.

params.ReferencedAssemblies.Add("Microsoft.VisualBasic.Dll")

params.ReferencedAssemblies.Add("System.Dll")

The preceding code snippet shows the typical actions you perform to prepare a Compiler-
Parameters object, as well as its most important properties. The statements inside the #If
block are especially interesting. You can include debug information in a dynamic assembly
and debug it from inside Visual Studio by setting the IncludeDebugInformation property to
True. To enable debugging, however, you must generate an actual .dll or .exe file (Generate-
InMemory must be False) and must not delete temporary files at the end of the compilation
process (the KeepFiles property of the TempFiles collection must be True). If debugging is
correctly enabled, you can force a break in the generated assembly by inserting the following
statement in the code you generate dynamically:

System.Diagnostics.Debugger.Break()

You are now ready to compile the assembly:

' Create the VB compiler.

Dim provider As New VBCodeProvider

Dim compRes As CompilerResults = provider.CompileAssemblyFromSource(params, source)

' Check whether we have errors.

If compRes.Errors.Count > 0 Then

' Gather all error messages and display them.

Dim msg As String = ""

For Each compErr As CompilerError In compRes.Errors

msg &= compErr.ToString & ControlChars.CrLf

Next

MessageBox.Show(msg, "Compilation Failed", MessageBoxButtons.OK, MessageBoxIcon.Error)

Else

' Compilation was successful.

…

End If

If the compilation was successful, you use the CompilerResults.CompiledAssembly property
to get a reference to the created assembly. Once you have this Assembly object, you can

C18621837.fm Page 772 Friday, December 9, 2005 8:55 PM

Chapter 18: Reflection 773

create an instance of its Evaluator class and invoke its Eval method by using standard
reflection techniques:

Dim asm As Assembly = compRes.CompiledAssembly

Dim evaluator As Object = asm.CreateInstance("Evaluator")

Dim evalMethod As MethodInfo = evaluator.GetType.GetMethod("Eval")

Dim args() As Object = {CDbl(123)} ' Pass x = 123

Dim result As Object = evalMethod.Invoke(evaluator, args)

Notice that you can’t reference the Evaluator class by a typed variable because this class
(and its container assembly) doesn’t exist yet when you compile the main application. For
this reason, you must use reflection both to create an instance of the class and to invoke its
members.

Another tricky thing to do when applying this technique is to have the dynamic assembly call
back a method in a class defined in the main application by means of reflection, for example,
to let the main application update a progress bar during a lengthy routine. Alternatively, you
can define a public interface in a DLL and must have the class in the main application imple-
ment the interface; being defined in a DLL, the dynamic assembly can create an interface
variable and therefore it can call methods in the main application through that interface.

You must be aware of another detail when you apply on-the-fly compilation in a real applica-
tion: once you load the dynamically created assembly, that assembly will take memory in your
process until the main application ends. In most cases, this problem isn’t serious and you
can just forget about it. But you can’t ignore it if you plan to build many assemblies on the fly.
The only solution to this problem is to create a separate AppDomain, load the dynamic assem-
bly in that AppDomain, use the classes in the assembly, and finally unload the AppDomain
when you don’t need the assembly any longer. On the other hand, loading the assembly in
another AppDomain means that you can’t use reflection to manage its types (reflection works
only with types in the same AppDomain as the caller). Please see the demo application in the
companion code for a solution to this complex issue.

Performance Considerations

I have warned about the slow performance of reflection-based techniques often in this chap-
ter. Using reflection to invoke methods is similar to using the late-binding techniques that are
available in script languages such as Microsoft Visual Basic Scripting Edition (VBScript), in
Visual Basic 6 when you use a Variant variable, or even in Visual Basic 2005 when you invoke
a method using an Object variable and Option Strict is Off.

In general, invoking a method by using reflection is many times slower than a direct call is,
and therefore you shouldn’t use these techniques in time-critical portions of your application.
In some scenarios, however, you need to defer the decision about which method to call until
run time, and therefore a direct call is out of the question. Even then, reflection should be your
last resort and should be used only if you can’t solve the problem with another technique
based on indirection, for example, an interface or a delegate.

C18621837.fm Page 773 Friday, December 9, 2005 12:19 PM

774 Part IV: Advanced Topics

If you decide to use reflection and you must invoke a method more than once or twice, you
should use Type.GetMethod to get a reference to a MethodInfo object and then use the
MethodInfo.Invoke method to do the actual call, rather than using the Type.InvokeMember
method because the former technique requires that you perform the discovery phase only
once.

Don’t use the BindingFlags.IgnoreCase value with the GetXxxx method (singular form), if
you know the exact spelling of the member you’re looking for, and specify the BindingFlags
.ExactBinding value if possible because it speeds up the search. The latter flag suppresses
implicit type conversions; therefore, you must supply the exact type of each argument:

' This code doesn't work—the GetMethod method returns Nothing.

' You must either use Integer instead of Short in the argTypes signature

' or drop the BindingFlags.ExactBinding bit in the GetMethod call.

Dim argTypes() As Type = {GetType(Char), GetType(Short)}

Dim mi As MethodInfo = GetType(String).GetMethod("IndexOf", BindingFlags.ExactBinding Or _

BindingFlags.Public Or BindingFlags.Instance, Nothing, argTypes, Nothing)

.NET Framework 2.0 improves performance in many ways. For example, in previous
versions of the .NET Framework, a call to the Type.GetXxxx (singular) adds a noticeable
overhead because all the type’s members are queried anyway, as if Type.GetMembers
were called. The results from this first call are cached, so at least you pay this penalty only
once, but this approach has a serious issue: if you reflect on many types, all the resulting
MemberInfo objects are kept in memory and are never discarded until the application
terminates.

In .NET Framework 2.0, a Type.GetXxxx method (singular form) doesn’t cause the explora-
tion of the entire Type object, and therefore execution is faster and memory consumption
is kept to a minimum. Also, the cache used by reflection is subject to garbage collection;
therefore, type and member information is discarded unless you keep it alive by storing a
reference in a Type or MemberInfo field at the class level.

An alternative technique for storing information about a large number of types and members
without taxing the memory is based on the RuntimeTypeHandle and RuntimeMethodHandle
classes that you can use instead of the Type and MemberInfo classes. Handle-based objects
use very little memory, yet they allow you to rebuild a reference to the actual Type or
MemberInfo-based object very quickly, as this code demonstrates:

' Store information about a method in the Person type.

Dim hType As RuntimeTypeHandle = GetType(Person).TypeHandle

Dim hMethod As RuntimeMethodHandle = GetType(Person).GetMethod("SendEmail").MethodHandle

…

' (Later in the application…)

' Rebuild the Type and MethodBase objects.

Dim ty As Type = Type.GetTypeFromHandle(hType)

Dim mb As MethodBase = MethodBase.GetMethodFromHandle(hMethod, hType)

' Use them as needed.

…

C18621837.fm Page 774 Friday, December 9, 2005 12:19 PM

Chapter 18: Reflection 775

Security Issues

A warning about using reflection at run time is in order. As you’ve seen in previous sections,
reflection allows you to access any type and any member, regardless of their scope. Therefore,
you can use reflection even to instantiate private types, call private methods, or read private
variables.

More precisely, your code can perform these operations if it is fully trusted or at least has
ReflectionPermission. All the applications that run from the local hard disk have this permis-
sion, whereas applications running from the Internet don’t. In general, if you don’t have
ReflectionPermission, you can perform only the following reflection-related techniques:

Enumerate assemblies and modules.

Enumerate public types and obtain information about them and their public members.

Set public fields and properties and invoke public members.

Access and enumerate family (Protected) members of a base class of the calling code.

Access and enumerate assembly (Friend) members from inside the assembly in which
the calling code runs.

You see that code can access through reflection only those types and members that it can
access directly anyway. For example, a piece of code can’t access a private field in another type
or invoke a private member in another type, even if that type is inside the same assembly as
the calling code. In other words, reflection doesn’t give code more power than it already has;
it just adds flexibility because of the additional level of indirection that it provides.

This discussion on reflection is important for one reason: never rely on the Private scope key-
word to hide confidential data from unauthorized eyes because a malicious user might create
a simple application that uses reflection to read your data. If the application runs from the
local hard disk, it has ReflectionPermission and can therefore access all the members of your
assembly, regardless of whether it’s an EXE or a DLL. (If you also consider that decompiling
a .NET assembly is as easy, you see that the only way to protect confidential data is by means
of cryptography.)

The ability to invoke nonpublic members can be important in some scenarios. For example,
in the section titled “The ICloneable Interface” in Chapter 10, I show how a type can imple-
ment the Clone method by leveraging the MemberwiseClone protected method, but in some
cases you’d like to clone an object for which you don’t have any source code. Provided that
your application runs in full trust mode and has ReflectionPermission, you can clone any
object quite easily with reflection. Here’s a reusable routine that performs a (shallow) copy of
the object passed as an argument:

Function CloneObject(Of T)(ByVal obj As T) As T

If obj Is Nothing Then

' Cloning a null object is easy.

Return Nothing

C18621837.fm Page 775 Friday, December 9, 2005 12:19 PM

776 Part IV: Advanced Topics

ElseIf TypeOf CObj(obj) Is ICloneable Then

' Take advantage of the ICloneable interface, if possible.

Dim iclone As ICloneable = DirectCast(obj, ICloneable)

Return CType(iclone.Clone(), T)

Else

' Use reflection if everything else failed.

' (Throws if application doesn't have ReflectionPermission.)

Dim mi As MethodInfo = obj.GetType().GetMethod("MemberwiseClone", _

BindingFlags.ExactBinding Or BindingFlags.NonPublic Or BindingFlags.Instance)

Return CType(mi.Invoke(obj, Nothing), T)

End If

End Function

Assuming that you have a Person type—with the usual FirstName, LastName, and Spouse
properties—the following code tests that the CloneObject method works correctly:

Dim john As New Person("John", "Evans")

Dim ann As New Person("Ann", "Beebe")

john.Spouse = ann

ann.Spouse = john

' We need no CType or DirectCast, thanks to generics.

Dim john2 As Person = CloneObject(john)

' Prove that it worked.

Console.WriteLine("{0} {1}, spouse is {2} {3}", john2.FirstName, john2.LastName, _

john2.Spouse.FirstName, john2.Spouse.LastName)

' => John Evans, spouse is Ann Beebe

C18621837.fm Page 776 Friday, December 9, 2005 12:19 PM

