
1047

ADO.NET in Disconnected 
Mode

In the preceding chapter, you saw how to work with ADO.NET in connected
mode, processing data coming from an active connection and sending SQL
commands to one. ADO.NET in connected mode behaves much like classic
ADO, even though the names of the involved properties and methods (and
their syntax) are often different.

You see how ADO.NET differs from its predecessor when you start work-
ing in disconnected mode. ADO 2.x permits you to work in disconnected mode
using client-side static recordsets opened in optimistic batch update mode. This
was one of the great new features of ADO that has proved to be a winner in cli-
ent/server applications of any size. As a matter of fact, working in disconnected
mode is the most scalable technique you can adopt because it takes resources
on the client (instead of on the server) and, above all, it doesn’t enforce any
locks on database tables (except for the short-lived locks that are created during
the update operation).

Note To make code samples in this chapter less verbose, all of them
assume that the following Imports statements have been specified at
the top of each source file:

Imports System.Data
Imports System.Data.OleDb
Imports System.Data.SqlClient

C21613753.fm  Page 1047  Monday, March 18, 2002  10:58 AM



1048 Part V Database Applications

The DataSet Object
Because ADO.NET (and .NET in general) is all about scalability and perfor-
mance, the disconnected mode is the preferred way to code client/server appli-
cations. Instead of a simple disconnected recordset, ADO.NET gives you the
DataSet object, which is much like a small relational database held in memory
on the client. As such, it provides you with the ability to create multiple tables,
fill them with data coming from different sources, enforce relationships
between pairs of tables, and more.

Even with all its great features, however, the DataSet isn’t always the best
answer to all database programming problems. For example, the DataSet object
is great for traditional client/server applications—for example, a Windows
Forms application that queries a database on a networked server—but is almost
always a bad choice in ASP.NET applications and, more generally, in all state-
less environments. An ASP.NET page lives only a short lifetime, just for the time
necessary to reply to a browser’s request, so it rarely makes sense to use a
DataSet to read data from a database, then send the data to the user through
HTML, and destroy the DataSet immediately afterward. (Yes, you might save the
DataSet in a Session variable, but this technique takes memory on the server
and might create server affinity, two problems that impede scalability, as I
explain in the “State Management and Caching” section of Chapter 24.)

Exploring the DataSet Object Model
The DataSet is the root and the most important object in the object hierarchy
that includes almost all the objects in the System.Data namespace. Figure 21-1
shows the most important classes in this hierarchy, with the name of the prop-
erty that returns each object.

An important feature of the DataSet class is its ability to define relation-
ships between its DataTable objects, much like what you do in a real database.
For example, you can create a relationship between the Publishers and the
Titles DataTable objects by using the PubId DataColumn that they have in com-
mon. After you define a DataRelation object, you can navigate from one table to
another, using the DataTable’s ChildRelations and ParentRelations properties.

A DataSet object consists of one or more DataTable objects, each one con-
taining data coming from a database query, an XML stream, or code added pro-
grammatically. Table 21-1 summarizes the most important members of the
DataSet class.

C21613753.fm  Page 1048  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1049

F21CN01

Figure 21-1. The DataSet object hierarchy.

�����������	
��������	 �����������	

�������	���������

����	�������������

��������
��������	 ��������

�������������	������������

����������	����

�������� ����	����������

�������� ����	�
��������	 �������� ����	�

�����������	

�����������	

��������

!��"��������

!��"��������

!��"��������

!��"��������
�����������

�������

����
���"	


�	�����	�

!��"��������

!��"��������

!��"��������

������������

�������
��������	


���"	���������

����
���"	
��������	


�	�����	����������


#����������	���������

����	��������	���������

����	���������������������

�������������������

���"���$����������


�	�����	�
��������	

�����������	
��������	

�����������	
��������	

��������
��������	

��������

�%�����������
���"	

���� ��

����&����
��������	

����&����

&�������������

!��"��������

!��"��������

!��"��������

!��"��������

C21613753.fm  Page 1049  Monday, March 18, 2002  10:58 AM



1050 Part V Database Applications

Table 21-1 Main Properties, Methods, and Events of the DataSet Class

Category Name Description

Properties DataSetName The name of this DataSet object.

Namespace The namespace for this DataSet, used when 
importing or exporting XML data.

Prefix The XML prefix for the DataSet namespace.

CaseSensitive True if string comparisons in this DataSet are 
case sensitive.

Locale The CultureInfo object containing the locale 
information used to compare strings in the 
DataSet (read/write).

HasErrors Returns True if there are errors in any of the 
DataTable objects in this DataSet.

EnforceConstraints True if constraint rules are enforced when 
attempting an update operation.

Tables Returns the collection of child DataTable objects.

Relations Returns the collection of DataRelation objects.

ExtendedProperties Returns the PropertyCollection object used to 
store custom information about the DataSet.

DefaultViewManager Returns a DataViewManager object that allows 
you to create custom search and filter settings for 
the DataTable objects in the DataSet.

Methods AcceptChanges Commits all changes to this DataSet after it was 
loaded or since the most recent AcceptChanges 
method.

RejectChanges Rejects all changes to this DataSet after it was 
loaded or since the most recent AcceptChanges 
method.

HasChanges Returns True if the DataSet has changed. It takes 
an optional DataRowState argument that lets you 
check for modified, inserted, or deleted rows 
only.

Merge Merges the current DataSet with another DataSet, 
a DataTable, or a DataRow array.

Reset Resets the DataSet to its original state.

Clone Creates a cloned DataSet that contains the identi-
cal structure, tables, and relationships as the cur-
rent one.

Copy Creates a DataSet that has both the same struc-
ture and the same data as the current one.

C21613753.fm  Page 1050  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1051

In the remainder of this section, I’ll briefly introduce all the major classes
in the DataSet hierarchy, with a list of their most important properties, methods,
and events. Once you have an idea of the purpose of each object, I’ll describe
how to perform the most common operations in disconnected mode.

The DataTable Class
A DataTable object resembles a database table and has a collection of DataCol-
umn instances (the fields) and DataRow instances (the records). It can also have
a primary key based on one or more columns and a collection of Constraint
objects, which are useful for enforcing the uniqueness of the values in a col-
umn. DataTable objects in a DataSet class are often tied to each other through
relationships, exactly as if they were database tables. A DataTable object can
also exist outside a DataSet class, the main limitation being that it can’t partici-
pate in any relationships.

Table 21-2 summarizes the most important members of the DataTable
object. As you see, some of the properties and methods have the same names
and meaning as properties and methods in the DataSet class.

Clear Clears all the data in the DataSet.

GetChanges Gets a DataSet that contains all the changes made 
to the current one since it was loaded or since 
the most recent AcceptChanges method, option-
ally filtered using the DataRowState argument.

ReadXml Reads an XML schema and data into the DataSet.

ReadXmlSchema Reads an XML schema into the DataSet.

GetXml Returns the XML representation of the contents 
of the DataSet.

InferXmlSchema Infers the XML schema from the TextReader or 
from the file into the DataSet.

WriteXml Writes the XML schema and data from the current 
DataSet.

WriteXmlSchema Writes the current DataSet’s structure as an XML 
schema.

Events MergeFailed Fires when two DataSet objects being merged 
have the same primary key value and the 
EnforceConstraints property is True.

Table 21-1 Main Properties, Methods, and Events of the DataSet Class (continued)

Category Name Description

C21613753.fm  Page 1051  Monday, March 18, 2002  10:58 AM



1052 Part V Database Applications

Table 21-2 Main Properties, Methods, and Events of the DataTable Class

Category Name Description

Properties TableName The name of this DataTable object.

Namespace The namespace for this DataTable, used when 
importing or exporting XML data.

Prefix The XML prefix for the DataTable namespace.

CaseSensitive Returns True if string comparisons in this DataTable 
are case sensitive.

Locale The CultureInfo object containing the locale infor-
mation used to compare strings in the DataTable 
(read/write).

HasErrors Returns True if there are errors in any of the 
DataRow objects in this DataTable.

DataSet Returns the DataSet this DataTable belongs to.

Rows Returns the collection of child DataRow objects.

Columns Returns the collection of child DataColumn objects.

ChildRelations Returns the collection of DataRelation objects in 
which this DataTable is the master table.

ParentRelations Returns the collection of DataRelation objects in 
which this DataTable is the detail table.

Constraints Returns the collection of the Constraint objects for 
this DataTable (for example, foreign key constraints 
or unique constraints).

ExtendedProperties Returns the PropertyCollection object used to store 
custom information about the DataTable.

MinimumCapacity The initial number of rows for this DataTable (read/
write).

PrimaryKey An array of DataColumn objects that represent the 
primary keys for the DataTable.

DefaultView Returns the DataView object that you can use to 
filter and sort this DataTable. 

DisplayExpression A string expression used to represent this table in 
the user interface. The expression supports the same 
syntax defined for the DataColumn’s Expression 
property.

Methods AcceptChanges Commits all changes to this DataTable after it was 
loaded or since the most recent AcceptChanges 
method.

RejectChanges Rejects all changes to this DataTable after it was 
loaded or since the most recent AcceptChanges 
method.

C21613753.fm  Page 1052  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1053

Reset Resets the DataTable to its original state.

Clone Creates a cloned DataTable that contains the identi-
cal structure, tables, and relationships as the current 
one.

Copy Creates a DataTable that has both the same structure 
and the same data as the current one.

Clear Clears all the data in the DataTable.

GetChanges Gets a DataTable that contains all the changes made 
to the current one after it was loaded or since the 
most recent AcceptChanges method, optionally fil-
tered by the DataRowState argument.

NewRow Creates a DataRow with the same schema as the 
current table.

ImportRow Copies the DataRow passed as an argument into the 
current table. The row retains its original and current 
values, its DataRowState values, and its errors.

Select Returns the array of all the DataRow objects that sat-
isfy the filter expression. It takes optional arguments 
that specify the desired sort order and the DataView-
RowState to be matched.

GetErrors Returns the array of all the DataRow objects that 
have errors.

Compute Calculates the expression specified by the first argu-
ment for all the rows that satisfy the filter expression 
specified in the second argument.

BeginLoadData Turns off notifications, index maintenance, and con-
straints while loading data; to be used in conjunction 
with the EndLoadData and LoadDataRow methods.

EndLoadData Ends a load data operation started with BeginLoad-
Data.

LoadDataRow Finds and updates a specific row or creates a new 
row if no matching row is found.

Events ColumnChanging Fires when a DataColumn is changing. The event 
handler can inspect the new value.

ColumnChanged Fires after a DataColumn has changed.

RowChanging Fires when a DataRow is changing.

RowChanged Fires after a DataRow has changed.

RowDeleting Fires when a DataRow is being deleted.

RowDeleted Fires after a DataRow has been deleted.

Table 21-2 Main Properties, Methods, and Events of the DataTable Class (continued)

Category Name Description

C21613753.fm  Page 1053  Monday, March 18, 2002  10:58 AM



1054 Part V Database Applications

The DataRow Class
The DataRow class represents an individual row (or record) in a DataTable.
Each DataRow contains one or more fields, which can be accessed through its
Item property. (Because it’s the the default member, the name of this property
can be omitted.) Table 21-3 lists the main properties and methods of the
DataRow object.

Table 21-3 Main Properties and Methods of the DataRow Class

Category Name Description

Properties Item Gets or sets the data stored in the speci-
fied column. The argument can be the 
column name, the column index, or a 
DataColumn object. An optional 
DataRowVersion argument lets you 
retrieve the current, original, proposed, or 
default value for the column.

ItemArray Gets or sets the values of all the columns, 
using an Object array.

RowState The current state of this row; can be 
Unchanged, Modified, Added, Deleted, or 
Detached.

HasErrors Returns True if there are errors in the col-
umn collection.

RowError Gets or sets a string containing the cus-
tom error description for the current row.

Methods AcceptChanges Commits all changes to this DataRow 
after it was loaded or since the most 
recent AcceptChanges method.

RejectChanges Rejects all changes to this DataRow after 
it was loaded or since the most recent 
AcceptChanges method.

BeginEdit Marks the beginning of an edit operation 
on a DataRow.

EndEdit Confirms all the changes to the DataRow 
since the most recent BeginEdit method.

CancelEdit Cancels all the changes to the DataRow 
since the most recent BeginEdit method.

Delete Deletes this row.

C21613753.fm  Page 1054  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1055

GetColumnError Returns the error description for the error 
in the column specified by the argument, 
which can be the column name, the col-
umn index, or a DataColumn object.

GetColumnsInError Returns the array of DataColumn objects 
that have an error.

SetColumnError Sets an error description for the specified 
column.

ClearErrors Clear all errors for this row, including the 
RowError property and errors set with the 
SetColumnError method.

IsNull Returns True if the specified column has a 
null value. The argument can be a col-
umn name, a column index, or a Data-
Column. An optional second argument 
lets you refer to a specific DataRow-
Version value (original, current, etc.).

GetChildRows Returns an array of the DataRow objects 
that are the child rows of the current 
row, following the relationship specified 
by the argument, which can be a rela-
tionship name or a DataRelation object. 
An optional second argument lets you 
refer to a specific DataRowVersion (origi-
nal, current, etc.) for the row to be 
retrieved.

GetParentRow Returns the parent DataRow object, fol-
lowing the relationship specified by the 
argument (which can be one of the val-
ues accepted by the GetChildRows 
method).

GetParentRows Returns an array of the parent DataRow 
objects, following the relationship speci-
fied by the argument (which can be one 
of the values accepted by the GetChild-
Rows method).

SetParentRow Sets the parent DataRow for the current 
row.

Table 21-3 Main Properties and Methods of the DataRow Class (continued)

Category Name Description

C21613753.fm  Page 1055  Monday, March 18, 2002  10:58 AM



1056 Part V Database Applications

The DataColumn Class
The DataColumn class represents a single column (field) in a DataRow or in a
DataTable. Not counting the methods inherited from System.Object, this class
exposes only the properties summarized in Table 21-4. All properties are read/
write except where otherwise stated.

The DataView Class
The DataView class represents a view over a DataTable object, a concept that
doesn’t really match any ADO object you might already know. For example,

Table 21-4 Main Properties of the DataColumn Class

Name Description

ColumnName The name of this column.

DataType The System.Type object that defines the data type of this column.

MaxLength The maximum length of a text column.

AllowDBNull A Boolean that determines whether null values can be accepted for 
this column (for rows belonging to a table).

Unique A Boolean that determines whether duplicated values are accepted in 
this column (for rows belonging to a table).

ReadOnly A Boolean that determines whether values in this column can be 
modified after the row has been added to a table.

DefaultValue The default value for this column when a new row is added to the 
table.

Expression The expression to be used for calculated columns.

AutoIncrement A Boolean that determines whether this is an auto-incrementing 
column (for rows added to a table).

AutoIncrementSeed The starting value for an auto-incrementing column.

AutoIncrementStep The increment value for an auto-incrementing column.

Caption The caption to be used for this column in the user interface.

Namespace The namespace for this DataTable, used when importing or export-
ing XML data.

Prefix The XML prefix for the DataTable namespace.

ColumnMapping The MappingType of this column, which is how this column is 
rendered as XML. It can be Element, Attribute, SimpleContent, or 
Hidden.

Table The DataTable this column belongs to (read-only).

Ordinal The position of this column in the DataColumnCollection (read-
only).

ExtendedProperties Returns the PropertyCollection object used to store custom informa-
tion about the DataTable (read-only).

C21613753.fm  Page 1056  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1057

you can filter the data in a table or sort it without affecting the values in the
original DataTable object. Or you can create a view on a table that does (or
doesn’t) allow insertions, deletions, or updates.

A DataView object contains a collection of DataRowView objects, which
are views over the rows in the underlying DataTable object. You can insert,
delete, or update these DataRowView objects, and your changes are reflected in
the original table as well. Another major function of the DataView class is to
provide data binding to Windows Forms and Web Forms. Table 21-5 summa-
rizes the most important members of the DataView class.

The DataRelation Class
The DataRelation class represents a relationship between two DataTable objects
in the same DataSet. The relationship is established between one or more fields

Table 21-5 Main Properties, Methods, and Events of the DataView Class

Category Name Description

Properties AllowDelete True if rows can be deleted.

AllowEdit True if values in the DataView can be modified.

AllowNew True if new rows can be added.

Item Returns the Nth DataRow (default member).

Count Returns the number of rows in this view.

RowFilter An expression that determines which rows appear in 
this view.

RowStateFilter A DataViewRowState enumerated value that determines 
how rows are filtered according to their state. It can be 
None, CurrentRows, OriginalRows, ModifiedCurrent, 
ModifiedOriginal, Added, Deleted, or Unchanged.

Sort A string that specifies the column or columns used as 
sort keys.

ApplyDefaultSort True if the default sort order should be used.

Table The source DataTable.

DataViewManager The DataView associated with this view (read-only).

Methods AddNew Adds a new row and returns a DataRowView object 
that can be used to set fields’ values.

Delete Deletes the row at the specified index.

Find Finds a row in the DataView given the value of its key 
column(s); returns the row index.

Events ListChanged Fires when the list managed by the DataView changes, 
that is, when an item is added, deleted, moved, or 
modified.

C21613753.fm  Page 1057  Monday, March 18, 2002  10:58 AM



1058 Part V Database Applications

in the parent (master) table and an equal number of fields in the child (detail)
table. Table 21-6 lists the main properties of the DataRelation class. (This class
doesn’t expose methods other than those inherited from System.Object.) Note
that all properties except Nested are read-only.

Building a DataSet
Most applications fill a DataSet with data coming from a database query. How-
ever, you can use a DataSet in stand-alone mode as well: in this case, you
define its structure, set the relationships between its DataTable objects, and fill
it with data exclusively through code. Even though this way of working with a
DataSet is less frequently used in real-world applications, I’ll describe it first
because it reveals many inner details of the DataSet class. (Filling a DataSet with
data coming from a database is described in the “Reading Data from a Data-
base” section later in this chapter.)

Here’s the sequence that you typically follow when you’re creating a
DataSet:

1. Create a DataSet object.

2. Create a new DataTable object with the desired name. You can set its
CaseSensitive property to decide how strings are compared inside
the table.

Table 21-6 Main Properties of the DataRelation Class

Name Description

RelationName The name of this relationship.

DataSet The DataSet object this relationship belongs to.

ParentTable The parent DataTable object.

ChildTable The child DataTable object.

ParentColumns An array of DataColumn objects representing the keys in the parent 
table that participates in this relationship.

ChildColumns An array of DataColumn objects representing the keys in the child 
table that participates in this relationship.

ParentKeyConstraint The UniqueConstraint object that ensures that values in the parent 
column are unique.

ChildKeyConstraint The ForeignKeyConstraint object that ensures that values in the child 
table’s foreign key column are equal to a value in the parent table’s 
key field.

Nested A Boolean value that specifies whether child columns should be 
rendered as nested elements when the DataSet is saved as XML text 
(read/write).

C21613753.fm  Page 1058  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1059

3. Create a new DataColumn object with a given name and type, and
optionally set other properties such as AllowDBNull, DefaultValue,
and Unique; you can also create calculated columns by setting the
Expression property.

4. Add the DataColumn object to the DataTable’s Columns collection.

5. Repeat steps 3 and 4 for all the columns in the table.

6. Assign an array of DataColumn objects to the PrimaryKey property of
the DataTable. This step is optional but often necessary to leverage
the full potential of a DataTable with a primary key.

7. Create one or more constraints for the table, which you do by creat-
ing either a UniqueConstraint or a ForeignKeyConstraint object, set-
ting its properties, and then adding it to the DataTable’s Constraints
collection.

8. Add the DataTable object to the DataSet’s Tables collection.

9. Repeat steps 2 through 8 for all the tables in the DataSet.

10. Create all the necessary relationships between tables in the DataSet;
you can create a relationship by passing its properties to the Add
method of the DataSet’s Relations collection or by explicitly creating
a DataRelation object, setting its properties, and then adding it to the
Relations collection.

Sometimes you can omit some of the steps in the preceding list—for
example, when you don’t need table constraints or relationships. You can also
make your code more concise by creating a DataTable and adding it to the par-
ent DataSet’s Tables collection in a single step or by adding a column to the
parent DataTable’s Columns collection without explicitly creating a DataCol-
umn object. In the following sections, I’ll provide examples for each of these
techniques.

You create a DataSet by calling its constructor method, which can take the
DataSet name. This name is used only in a few cases—for example, when
you’re outputting data to XML. If the name is omitted, your new DataSet’s name
defaults to NewDataSet:

Dim ds As New DataSet(“MyDataSet”)

As a rule, your application creates and manages only one DataSet object at
a time because you can create relationships between tables only if they belong
to the same DataSet. In some circumstances, however, working with multiple
DataSet objects can be convenient—for example, when you want to render as
XML only some of the DataTable objects you’re working with or when you

C21613753.fm  Page 1059  Monday, March 18, 2002  10:58 AM



1060 Part V Database Applications

want to create a clone of the main DataSet at a given moment in time so that
you can restore it later.

Creating a DataTable Object
The code that follows creates a DataSet object that contains an Employees table:

‘ This is at the form level, to be shared among all procedures.
Dim ds As New DataSet()

Sub CreateEmployeesTable()
’ Create a table; set its initial capacity and case sensitivity.
Dim dtEmp As New DataTable(“Employees”)
dtEmp.MinimumCapacity = 100
dtEmp.CaseSensitive = False

’ Create all columns.
’ You can create a DataColumn and then add it to the Columns collection.
Dim dcFName As New DataColumn(“FirstName", GetType(String))
dtEmp.Columns.Add(dcFName)
’ Or you can create an implicit DataColumn with the Columns.Add method.
dtEmp.Columns.Add(“LastName", GetType(String))
dtEmp.Columns.Add(“BirthDate", GetType(Date))

’ When you have to set additional properties, you can use an explicit
’ DataColumn object, or you can use a With block.
With dtEmp.Columns.Add(“HomeAddress", GetType(String))

.MaxLength = 100
End With
’ (When you must set only one property, you can be more concise,
’ even though the result isn’t very readable.)
dtEmp.Columns.Add(“City", GetType(String)).MaxLength = 20

’ Create a calculated column by setting the Expression
’ property or passing it as the third argument to the Add method.
dtEmp.Columns.Add(“CompleteName", GetType(String), _

 “FirstName + ’ ’ + LastName”)

’ Create an ID column.
Dim dcEmpId As New DataColumn(“EmpId", GetType(Integer))
dcEmpId.AutoIncrement = True ’ Make it auto-increment.
dcEmpId.AutoIncrementSeed = 1
dcEmpId.AllowDBNull = False ’ Default is True.
dcEmpId.Unique = True ’ All key columns should be unique.
dtEmp.Columns.Add(dcEmpId) ’ Add to Columns collection.

’ Make it the primary key.
Dim pkCols() As DataColumn = {dcEmpId}
dtEmp.PrimaryKey = pkCols

C21613753.fm  Page 1060  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1061

’ You can also use a more concise syntax, as follows:
dtEmp.PrimaryKey = New DataColumn() {dcEmpId}

’ This is a foreign key, but we haven’t created the other table yet.
dtEmp.Columns.Add(“DeptId", GetType(Integer))

’ Add the DataTable to the DataSet.
ds.Tables.Add(dtEmp)

End Sub

The MinimumCapacity property offers an opportunity to optimize the per-
formance of the application: the first rows that you create—up to the number
defined by this property—won’t require any additional memory allocation and
therefore will be added more quickly.

As you see in the listing, you define the type of a DataColumn by using a
System.Type object. So most of the time you’ll use the Visual Basic GetType
function for common data types such as String, Integer, and Date. The many
remarks explain the several syntax variations that you might adopt when you’re
adding a new column to the table’s schema.

Some columns might require that you set additional properties. For exam-
ple, you should set the AllowDBNull property to False to reject null values, set
the Unique property to True to ensure that all values in the column are unique,
or set the MaxLength property for String columns. You can create auto-incre-
menting columns (which are often used as key columns) by setting the AutoIn-
crement property to True and optionally setting the AutoIncrementSeed and
AutoIncrementStep properties:

’ Create an ID column.
Dim dcEmpId As New DataColumn(“EmpId", GetType(Integer))
dcEmpId.AutoIncrement = True ’ Make it auto-increment.
dcEmpId.AutoIncrementSeed = 1
dcEmpId.AllowDBNull = False ’ Default is True.
dcEmpId.Unique = True ’ All key columns should be unique.

You can set the primary key by assigning a DataColumn array to the Pri-
maryKey property of the DataTable object. In most cases, this array contains
just one element, but you can create compound keys made up of multiple col-
umns if necessary:

‘ Create a primary key on the FirstName and LastName columns.
‘ (Create the DataColumn arrays on the fly.)
dtEmp.PrimaryKey = New DataColumn() _

{dtEmp.Columns(“FirstName”), dtEmp.Columns(“LastName”)}

The DataTable built in the CreateEmployeesTable procedure also contains
a calculated column, CompleteName, evaluated as the concatenation of the

C21613753.fm  Page 1061  Monday, March 18, 2002  10:58 AM



1062 Part V Database Applications

FirstName and LastName columns. You can assign this expression to the
Expression property or pass it as the third argument of the Add method. The
“Working with Expressions” section later in this chapter describes which oper-
ators and functions you can use in an expression.

Note Interestingly, you can store any type of object in a DataSet,
including forms, controls, and your custom objects. When using a col-
umn to store an object, you should specify the column type with Get-
Type(Object). If the object is serializable, it will be restored correctly
when you write the DataSet to a file and read it back. (If the object isn’t
serializable, you get an error when you attempt to serialize the
DataSet.) Note that the object state isn’t rendered correctly as XML
when you issue the WriteXml method, however. (See the “Writing XML
Data” section in Chapter 22 for more information about this method.)

Adding Rows
The only significant operation that you can perform on an empty DataTable is
the addition of one or more DataRow objects. The sequence to add a new row
is as follows:

1. Use the DataTable’s NewRow method to create a DataRow object
with the same column schema as the table.

2. Assign values to all the fields in the DataRow (at least, to all fields
that aren’t nullable and that don’t support a default value).

3. Pass the DataRow to the Add method of the table’s Rows collection.

You should ensure that the new row doesn’t violate the constraints
defined for the table. For example, you must provide a value for all non-nul-
lable columns and set a unique value for the primary key and for all the keys
whose Unique property is True. Here’s an example that adds a row to the
Employees table defined previously. (Note that it doesn’t set the primary key
because you’ve defined an auto-incrementing column.)

‘ Get a reference to the Employees table.
Dim dtEmp As DataTable = ds.Tables(“Employees”)
‘ Create a new row with the same schema.
Dim dr As DataRow = dtEmp.NewRow()

‘ Set all the columns.
dr(“FirstName”) = “Joe"
dr(“LastName”) = “Doe"

C21613753.fm  Page 1062  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1063

dr(“BirthDate”) = #1/15/1955#
dr(“HomeAddress”) = “1234 A Street"
dr(“City”) = “Los Angeles"
dr(“DeptId”) = 1
‘ Add to the Rows collection.
dtEmp.Rows.Add(dr)

The Rows collection also supports an InsertAt method, which apparently
would let you insert the new row in any position of the DataTable.

When adding a large number of rows, you can optimize the performance
of your code by using the LoadDataRow method (which takes an array of the
values to be assigned) and bracketing your code in the DataTable’s BeginLoad-
Data and EndLoadData methods. (These methods temporarily disable and then
reenable notifications, index maintenance, and constraints while loading data.)
For example, suppose you want to import data into the Employees table from
a semicolon-delimited file structured as follows:

“Andrew";"Fuller";2/19/1952;"908 W. Capital Way";"Tacoma"
"Janet";"Leverling";8/30/1963;"722 Moss Bay Blvd.";"Kirkland”

Here’s how you can solve the problem with a concise routine that’s also as
efficient as possible:

‘ Open the file, and read its contents.
Dim sr As New System.IO.StreamReader(“employees.dat”)
Dim fileText As String = sr.ReadToEnd
sr.Close()

‘ This regular expression defines a row of elements and assigns a name
‘ to each group (that is, a field in the text row).
Dim re As New System.Text.RegularExpressions.Regex( _

 “""(?<fname>[^""]+)"";""(?<lname>[^""]+)"";(?<bdate>[^;]+);” _
& “""(?<addr>[^""]+)"";""(?<city>[^""]+)""“)

Dim ma As System.Text.RegularExpressions.Match

‘ Turn off index maintenance and constraints.
dtEmp.BeginLoadData()
‘ Repeat for each match (that is, each line in the file).
For Each ma In re.Matches(fileText)

’ A new line has been found, so add a row to the table.
’ Create an array of values.
Dim values() As Object = {ma.Groups(“fname”).Value, _

ma.Groups(“lname”).Value, ma.Groups(“bdate”).Value, _
ma.Groups(“addr”).Value, ma.Groups(“city”).Value}

’ Load all fields in one operation.
dtEmp.LoadDataRow(values, True)

Next
‘ Turn on index maintenance and constraints.
dtEmp.EndLoadData()

C21613753.fm  Page 1063  Monday, March 18, 2002  10:58 AM



1064 Part V Database Applications

The syntax of the regular expression used to parse the file is maybe the
most complex part of this code, but it’s simpler than you might imagine. The pur-
pose of this regular expression is to define the structure of each line in the data
file and assign a distinct name to each group of characters delimited by semi-
colons and (in some cases) enclosed in double quotation marks. The meaning
of the pattern becomes clearer if you get rid of the repeated double quotation
marks that you see inside the string itself and split the expression according to
each of the fields referenced:

“(?<fname>[^"]+)";
"(?<lname>[^"]+)";
(?<bdate>[^;]+);
"(?<addr>[^""]+)";
"(?<city>[^""]+)”

Thanks to the groups defined in the regular expression, you can then reference
each field by its name when you create the array of values:

Dim values() As Object = {ma.Groups(“fname”).Value, _
ma.Groups(“lname”).Value, ma.Groups(“bdate”).Value, _
ma.Groups(“addr”).Value, ma.Groups(“city”).Value}

Be aware that the LoadDataRow method adds a new row only if the key
field isn’t already in the table. If you’re passing the primary key as a value and
the table already contains a record with that key, the LoadDataRow method
replaces the existing row with the new values. For this reason, it’s important
that you correctly set the DataTable’s primary key to avoid duplicate keys.

The BeginLoadData and EndLoadData methods are also useful for per-
forming changes in a DataTable that would result in a temporary violation of
the referential integrity rules or other constraints such as the uniqueness of a
column—for example, when you have to exchange the primary keys of two
rows in a table.

Updating and Deleting Rows
One important difference between an ADO disconnected Recordset and a
DataTable is that the latter doesn’t support the concept of navigation through its
rows. If you think about it, the inability to access any row other than the current
one is a limitation that the ADO Recordset has only because it must serve
server-side cursors. This limitation makes little sense when all the data has been
transferred to the client application. Because the DataSet and its DataTable
objects have been designed specifically for client-side operations, they get rid
of the current record concept and appear to the developer like an array of
DataRow objects, which you can access through their positional index. For

C21613753.fm  Page 1064  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1065

example, the following loop converts the FirstName and LastName columns to
uppercase in the first 10 records of the Employees table:

Dim i As Integer
For i = 0 To 9

Dim dr As DataRow = dtEmp.Rows(i)
dr(“FirstName”) = dr(“FirstName”).ToString.ToUpper
dr(“LastName”) = dr(“LastName”).ToString.ToUpper

Next

You can also avoid the temporary DataRow object, as in this code snippet:

‘ Clear the name fields of all the records in the DataTable.
For i = 0 To dtEmp.Rows.Count - 1

dtEmp.Rows(i)(“FirstName”) = “"
dtEmp.Rows(i)(“LastName”) = “"

Next

You can also use a For Each loop when looping over all the DataRow
items in a DataTable:

Dim dr As DataRow
For Each dr In dtEmp.Rows

dr(“FirstName”) = “"
dr(“LastName”) = “"

Next

Deleting a row is as easy as issuing a Delete method on the corresponding
DataRow object:

‘ Delete the last DataRow in the table.
dtEmp.Rows(dtEmp.Rows.Count – 1).Delete

However, deleted rows aren’t physically deleted from the DataSet. In fact,
the only effect of the Delete method is to mark the row as deleted: the row is
still in the DataTable, even though you can perform only a small number of
operations on it. You can detect whether a row is deleted by means of the Row-
State property, which is described in the following section.

The Rows collection supports the Remove method, which removes the
DataRow from the collection. Unlike the DataRow’s Delete method, the row is
immediately removed from the DataSet and not just marked for deletion:

‘ Remove the last DataRow in the table. (Can’t be undeleted.)
dtEmp.Rows.Remove(dtEmp.Rows.Count – 1)

Accepting and Rejecting Changes
Because the DataSet is just a client-side repository of data and is physically
disconnected from any data source, it should be clear that the operations you

C21613753.fm  Page 1065  Monday, March 18, 2002  10:58 AM



1066 Part V Database Applications

perform on the DataSet, its tables, and its rows aren’t reflected in the data
source you used to fill it, at least not automatically, as happens with ADO key-
sets and dynamic recordsets. (I discuss how you update a database from a
DataSet later in this chapter.)

I mentioned in the preceding section that when you delete a row you’re
actually marking it for deletion, but the row is still in the DataSet. You can test
the current state of a DataRow object by querying its RowState property, which
can return one of the following values:

� Detached The row has been created but hasn’t been added to a
DataTable.

� Added The row has been added to a DataTable.

� Modified The row has been updated.

� Deleted The row has been deleted.

� Unchanged The row hasn’t been modified.

You can use the DataTable’s Select method to filter the rows in a table
depending on their current state, as I explain in the “Filtering, Searching, and
Sorting” section later in this chapter.

The RowState property is read-only, but the DataRow class exposes two
methods that affect this property. You invoke the AcceptChanges method to
confirm your changes on the current row and the RejectChanges method to
cancel them. (Once again, these methods don’t really update any data source
outside the DataSet.) The effect of the AcceptChanges method is to physically
delete rows marked for deletion and then set the RowState property of all the
remaining rows to Unchanged. The RejectChanges method drops all the rows
that have been added since the DataTable was loaded and then sets the Row-
State property of all the remaining rows to Unchanged.

To see in greater detail how these methods affect the state of a row, con-
sider the following code:

Dim dr As DataRow = dtEmp.NewRow
Debug.WriteLine(dr.RowState) ’ => Detached
dr(“FirstName”) = “Joe"
dr(“LastName”) = “Doe"
dtEmp.Rows.Add(dr)
Debug.WriteLine(dr.RowState) ’ => Added

‘ AcceptChanges marks all records as unchanged.
dr.AcceptChanges()
Debug.WriteLine(dr.RowState) ’ => Unchanged
dr(0) = “"

C21613753.fm  Page 1066  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1067

Debug.WriteLine(dr.RowState) ’ => Modified
dr.Delete()
Debug.WriteLine(dr.RowState) ’ => Deleted

‘ RejectChanges undeletes the row and restores its unchanged status.
dr.RejectChanges()
Debug.WriteLine(dr.RowState) ’ => Unchanged
dr.Delete()
Debug.WriteLine(dr.RowState) ’ => Deleted

‘ AcceptChanges definitively deletes the row,
‘ which now appears to be detached.
dr.AcceptChanges()
Debug.WriteLine(dr.RowState) ’ => Detached

Also, the DataTable and the DataSet classes expose the AcceptChanges
and RejectChanges methods, so you can easily accept or undo changes that
you’ve made in all the rows in a table and all the tables in a DataSet. Note that
the second argument of the LoadDataRow method specifies whether the
method should execute an implicit AcceptChanges.

Validating Values in Rows and Columns
All robust applications should validate data entered by the end user. Doing
this is easy when you add data programmatically—you just avoid entering
invalid values. But validation is less easy when the end user enters or modi-
fies records through the user interface—for example, by means of a bound
DataGrid control. Fortunately, validating data entered by this route is also rel-
atively simple thanks to the events that the DataTable object exposes. (See
Table 21-2.) These events are of two types: xxxChanging (which occur before
a column is changed, a row is changed, or a row is deleted) and xxxChanged
(which occur after the column has changed, the row has changed, or the row
has been deleted).

The demo application displays the Employees table in the lowest grid
and then assigns the Employees table to a DataTable variable marked with the
WithEvents keyword so that any editing action on the table underlying the
DataGrid control can be handled through code:

Dim WithEvents DataTable As DataTable

Private Sub btnEvents_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles btnEvents.Click
’ Demonstrate how to deal with events from the Employees table.
DataTable = ds.Tables(0)

End Sub

C21613753.fm  Page 1067  Monday, March 18, 2002  10:58 AM



1068 Part V Database Applications

Validating a new value in a column is as easy as trapping the Column-
Changing event, checking the new value (which can be found in the Pro-
posedValue property of the object passed in the second argument to the event
handler), and throwing an exception if it can’t be accepted. For example, the
following code rejects future dates assigned to the BirthDate column:

Private Sub DataTable_ColumnChanging(ByVal sender As Object, _
ByVal e As DataColumnChangeEventArgs) Handles DataTable.ColumnChanging
If e.Column.ColumnName = “BirthDate” Then

If CDate(e.ProposedValue) > Date.Now Then
Throw New ArgumentException(“Invalid birth date value”)

End If
End If

End Sub

If the user attempts to enter an invalid birth date in the DataGrid, the old
value is automatically restored when the caret leaves the grid cell. Note that
the DataGrid absorbs the exception and no error message is shown to the
user. Interestingly, you can check the value and throw the exception even in
the ColumnChanged event handler: in this case, the value is rejected only
when the caret leaves the row (not the column).

Often you can’t validate columns individually and must consider two or
more columns at a time. The typical case is when the value in a column must
be greater or lower than the value in another column. In this case, you must
validate both columns in the RowChanging event handler. This event fires
when a row is changed or added to the table. You can determine the action
being performed by checking the Action property of the second argument
passed to the event handler. For example, you can use the following code to
ensure that State and Country columns can’t both be null strings:

Private Sub DataTable_RowChanging(ByVal sender As Object, _
ByVal e As DataRowChangeEventArgs) Handles DataTable.RowChanging
If CStr(e.Row(“State”)) = ““ And CStr(e.Row(“Country”)) = ““ Then

Throw New ArgumentException(“State and Country can’t both be empty”)
End If

End Sub

In this case, the DataGrid catches the exception when the user moves the caret
to another row, displays the error message you’ve passed to the ArgumentEx-
ception’s constructor, and restores the original values in the row’s fields.

The xxxChanged events aren’t just for validation chores, and you can
use them in a variety of other situations as well. For example, you might use
them to update a calculated column that depends on one or more other col-

C21613753.fm  Page 1068  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1069

umns but whose value can’t be expressed using the operators allowed by
ADO.NET for calculated columns. (See the “Working with Expressions” sec-
tion later in this chapter.)

Setting, Retrieving, and Fixing Errors
Instead of throwing exceptions when a column or a row doesn’t contain valid
values, you can opt for a different error handling strategy and just mark the col-
umn or the row with an error message. This approach lets you show end users
a list of all the existing errors so that they can decide to fix the invalid values or
cancel the update operation as a whole. (This alternative strategy is more feasi-
ble when you’re importing data from a file or when the user has submitted all
changes together, as is the case when he or she fills out a form in the browser
and then clicks the Submit button.)

If you opt for this strategy, you can still use the xxxChanging and xxx-
Changed events as before; what changes is the way to react to an invalid
value. When you detect an invalid column value, you use the DataRow’s Set-
ColumnError method to associate an error message with that column. When
you detect an invalid row, you assign an error message to the DataRow’s
RowError property:

Private Sub DataTable_ColumnChanging(ByVal sender As Object, _
ByVal e As DataColumnChangeEventArgs) Handles DataTable.ColumnChanging
If e.Column.ColumnName = “BirthDate” Then

If CDate(e.ProposedValue) > Date.Now Then
e.Row.SetColumnError(e.Column.ColumnName, _

 “Invalid birth date value”)
End If

End If
End Sub

Private Sub DataTable_RowChanging(ByVal sender As Object, _
ByVal e As DataRowChangeEventArgs) Handles DataTable.RowChanging
If CStr(e.Row(“State”)) = ““ And CStr(e.Row(“Country”)) = ““ Then

e.Row.RowError = “State and Country can’t both be null"
End If

End Sub

It’s interesting to see that the DataGrid control reacts to columns and rows
marked with an error by displaying an error icon in the column’s cell or in the
row indicator, respectively, but without automatically restoring the original val-
ues. You can then move the mouse cursor over the icon to read the error mes-
sage you’ve set via code. (See Figure 21-2.)

C21613753.fm  Page 1069  Monday, March 18, 2002  10:58 AM



1070 Part V Database Applications

F21CN02

Figure 21-2. The DataGrid control displays error icons near invalid 
columns and rows.

You can check via code whether a DataRow, a DataTable, or a DataSet
contains any error through its HasErrors read-only property, without having to
go through each column of each row of each table in the DataSet. For example,
you can use the following loop to evaluate the number of rows that contain one
or more errors:

Dim dt As DataTable, dr As DataRow, numErrors As Integer
If ds.HasErrors Then

’ There is at least one DataTable with an invalid row.
For Each dt In ds.Tables

If dt.HasErrors Then
’ There is at least one DataRow with an invalid column.
For Each dr In dt.Rows

If dr.HasErrors Then numErrors += 1
Next

End If
Next

End If
‘ Now numErrors contains the number of rows with errors.

You can retrieve the actual error message associated with a column by
means of the DataRow’s GetColumnError method. And you can clear all the
error messages associated with a row by using the ClearErrors method. You can
get the array of all the columns that have an error with GetColumnsInError.

‘ Gather all the error messages associated with individual columns.
‘ (dr is the DataRow under examination.)

C21613753.fm  Page 1070  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1071

Dim messages As String, dc As DataColumn
For Each dc In dr.GetColumnsInError()

Messages &= dr.GetColumnError(dc) & ControlChars.CrLf
Next

Your application might even attempt to resolve some errors without the
assistance of end users. For example, you might keep a numeric or date value
within its valid range, and you can use the spelling checker and automatically
correct the name of a state or country. When you attempt to fix the errors each
row contains, you can take advantage of the DataRow’s ability to preserve both
the original value and the current version of the value in each column. You can
access these versioned values by passing a DataRowVersion argument to the
Item property, after checking with the HasVersion method that the row sup-
ports the versioned value you’re looking for:

‘ This code attempts to resolve errors in the BirthDate column
‘ by restoring the original value if there is one.
Dim dr As DataRow
For Each dr In dtEmp.Rows

If dr.GetColumnError(“BirthDate”) <> ““ Then
If dr.HasVersion(DataRowVersion.Original) Then

dr(“BirthDate”) = dr(“BirthDate", DataRowVersion.Original)
’ This statement hides the error icon in the DataGrid.
dr.SetColumnError(“BirthDate", ““)

End If
End If

Next

When you issue the DataRow’s AcceptChanges method, the proposed
value becomes the current value and the original value persists. Conversely,
when you issue the DataTable’s AcceptChanges method, the original value is
lost and both the DataRowVersion.Original and DataRowVersion.Current val-
ues for the second argument return the same result. The reasons for this
behavior will become apparent in the “Updating the Database” section later in
this chapter.

If you enclose your edit operations between BeginEdit and EndEdit (or
CancelEdit) methods, you can query the value being assigned but not yet com-
mited using the DataRowVersion.Proposed value for the argument. When you
issue the EndEdit method, the proposed value becomes the current value.

Filtering, Searching, and Sorting
You can choose from two different techniques for filtering, searching, and sort-
ing the rows of a DataTable: you can use its Select method, or you can define
a DataView object. The Select method takes up to three arguments: a filter
expression, a sort criterion, and a DataViewRowState enumerated argument that

C21613753.fm  Page 1071  Monday, March 18, 2002  10:58 AM



1072 Part V Database Applications

lets you filter rows on their current state and decide which value you see in the
columns of modified rows. In its simplest form, the Select method takes a filter
expression and returns an array of matching DataRow elements:

‘ Retrieve all employees whose first name is Joe.
Dim drows() as DataRow = dtEmp.Select(“FirstName = ’Joe’”)

The second (optional) argument is the list of fields on which the result
array should be sorted:

‘ Retrieve all employees born in 1960 or later, and
‘ sort the result on their (LastName, FirstName) fields.
drows = dtEmp.Select(“BirthDate >= #1/1/1960#", “LastName, FirstName”)

You can also sort in descending mode using the DESC qualifier, as in this
code snippet:

‘ Retrieve all employees born in 1960 or later, and
‘ sort the result on their birth date. (Younger employees come first.)
drows = dtEmp.Select(“BirthDate >= #1/1/1960#", “BirthDate DESC”)

Finally, you can filter rows depending on their state by passing a
DataViewRowState value that specifies whether you’re interested in changed,
unchanged, added, or deleted rows:

‘ Retrieve all deleted rows, sorted by (FirstName, LastName) values.
drows = dtEmp.Select(“", “FirstName, LastName", DataViewRowState.Deleted)

The third argument can take any of the values listed in Table 21-7; if you
omit this argument, you see rows with their current values and deleted rows
aren’t returned. The Select method is therefore able to access the values that
were in the DataTable after the most recent AcceptChanges or RejectChanges
method or after reading them from a data source by using a DataAdapter object
(as I explain in a later section).

The following code uses the Select method to extract a subset of rows
from the Employees table and loads them into another table with the same col-
umn structure by means of ImportRow, a method that imports a DataRow
object into a table without resetting the row’s original and current values and its
RowState property:

‘ Copy only the structure of the Employees table in the new table.
Dim newDt As DataTable = dtEmp.Clone()
newDt.TableName = “YoungEmployees"

‘ Select a subset of all employees, sorted on their names;
‘ extract only modified rows, with their current values.
Dim drows() As DataRow = dtEmp.Select(“BirthDate >= #1/1/1960#", _

 “LastName, FirstName", DataViewRowState.ModifiedCurrent)
‘ Import the array of DataRows into the new table.

C21613753.fm  Page 1072  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1073

Dim dr As DataRow
For Each dr In drows

newDt.ImportRow(dr)
Next

Using the DataView Object
Another way for you to filter or sort the rows in a DataTable is to use an auxil-
iary DataView object. As its name suggests, this object works as a view over an
existing DataTable. You can decide which records are visible by means of the
DataView’s RowFilter property, sort its rows with the Sort property, and decide
which column values are displayed by assigning a DataViewRowState enumer-
ated value to the DataView’s RowStateFilter property. These properties give you
the same filtering and sorting capabilities as the Select method:

‘ Display a subset of all employees, sorted on their names;
‘ show only modified rows, with their current values.

‘ Create a DataView on this table.
Dim dv As New DataView(dtEmp)
‘ Set its filter and sort properties.
dv.RowFilter = “BirthDate >= #1/1/1960#"
dv.Sort = “LastName, FirstName"
dv.RowStateFilter = DataViewRowState.ModifiedCurrent

You can add, delete, and modify rows in a DataView by using the same
methods you’d use with a regular DataTable, and your edit operation will affect
the underlying table. You can also use the Find method to retrieve a DataRow
given its primary key value.

Table 21-7 Allowed Values for the DataViewRowState Argument

Name Description

CurrentRows Current rows, including unchanged, new, and modified rows. Deleted 
rows aren’t visible.

OriginalRows Original rows as they were after the most recent AcceptChanges or 
RejectChanges method, including unchanged and deleted rows. Added 
rows aren’t visible.

Unchanged Unchanged rows only.

Added Added rows only.

Deleted Deleted rows only.

ModifiedCurrent Changed rows only. Columns contain the current (modified) value.

ModifiedOriginal Changed rows only. Columns contain the original value.

None No rows are returned.

C21613753.fm  Page 1073  Monday, March 18, 2002  10:58 AM



1074 Part V Database Applications

The DataView object is especially useful when you bind it to a Windows
Form control or Web Form control. For example, you might have two DataGrid
controls displaying data from two DataView objects, each one containing a dif-
ferent view of the same table—for example, the original and the edited rows or
two different sorted views of the same data. You bind a DataView to a DataGrid
by assigning it to the control’s DataSource property and then calling its Data-
Bind method:

DataGrid1.DataSource = dv
DataGrid1.DataBind()

Even when you have an unfiltered and unsorted set of data, binding a
DataView instead of a DataTable is usually a better idea because you can finely
control what operations the end user can perform on data by means of the
DataView’s AllowDelete, AllowEdit, and AllowNew properties. See Table 21-5
for the list of the main properties, methods, and events of the DataView class.

Creating Relationships
A great feature of the DataSet is its ability to create relationships between its
DataTable objects. Like real relational databases, a DataSet allows a relationship
between two tables if they have a field in common. For example, you can
establish a relationship between the Publishers and Titles tables if they have the
PubId field in common. In this case, there would be a one-to-many relationship
from the Publishers table (the parent or master table) to the Titles table (the
child or detail table).

Lookup tables often use relationships, such as when you use the DeptId
field in the Employees table to retrieve the name of the department in the
Departments table. This is the case shown in the following diagram.

G21CN01Let’s see how to build such a relationship. First of all, let’s create the
Departments table and add some rows to it:

�"�!�

'�����

(�	����)����

%	����*�����

'�	��+�)����	�

��������������,

 ��)�	-��#�	�	

.

/

0

1

2

3

�"������������
��#����

����!� (�"�

 ����

&��# ������

���,���	�

������"�	�������
�����	��

.

0

/

.

.

0

.

/

0

����!�

C21613753.fm  Page 1074  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1075

‘ Create the Departments table.
Dim dtDept As New DataTable(“Departments”)

‘ The DeptId field must be marked as unique.
Dim dcDeptId As DataColumn = dtDept.Columns.Add(“DeptId", GetType(Integer))
dcDeptId.Unique = True
‘ The department name must be unique as well.
Dim dcName As DataColumn = dtDept.Columns.Add(“Name", GetType(String))
dcName.MaxLength = 50
dcName.Unique = True
‘ Make DeptId the primary key of the table.
dtDept.PrimaryKey = New DataColumn() {dcDeptId}
‘ Add this table to the DataSet.
ds.Tables.Add(dtDept)

‘ Add a few rows.
Dim values() As Object = {1, “Sales"}
dtDept.LoadDataRow(values, True)
‘ You can do the same in just one statement.
dtDept.LoadDataRow(New Object() {2, “Tech Support"}, True)
dtDept.LoadDataRow(New Object() {3, “Marketing"}, True)

Next let’s ensure that the DeptId field in the Employees table points to an
existing row in the Departments table:

‘ Ensure that all Employees are associated with a Department.
Dim i As Integer
For i = 0 To dtEmp.Rows.Count - 1

’ Assign a DeptId value in the range 1-3.
dtEmp.Rows(i).Item(“DeptId”) = CInt((i Mod 3) + 1)

Next
dtEmp.AcceptChanges()

Now we can create the relationship between the Departments and
Employees tables. You can choose from a couple of ways to create a relation-
ship: you can create a DataRelation object explicitly and then add it to the
DataSet’s Relations collection, or you can create a relationship directly with
the Add method of the Relations collection. The following code snippet uses the
first approach:

‘ The DataRelation constructor takes the name of the relationship and
‘ a reference to the DataColumn in the parent and in the child table.
Dim relDeptEmp As New DataRelation(“DeptEmp", _

dtDept.Columns(“DeptId”), dtEmp.Columns(“DeptId”))
ds.Relations.Add(relDeptEmp)

The upper grid in Figure 21-3 shows how a DataGrid control displays a
DataTable that works as a parent table in a relationship.

C21613753.fm  Page 1075  Monday, March 18, 2002  10:58 AM



1076 Part V Database Applications

F21CN03

Figure 21-3. The DataGrid control lets you navigate through DataTable
objects linked by relationships.

Once you have created a relationship, you can easily navigate from one
table to the other using the GetParentRow and GetChildRows methods of the
DataRow class. You use the former method to get the row in the parent table
that corresponds to the current row in the child table. For example, you can
retrieve the name of the department associated with the first row in the Employ-
ees table as follows:

‘ Retrieve the name of the department of the first employee.
Dim drDepartment As DataRow = dtEmp.Rows(0).GetParentRow(“DeptEmp”)
Dim deptName As String = CStr(drDepartment(“Name”))

You use the GetChildRows method when navigating from a row in the
parent table to the corresponding rows in the child table. However, because
this is a one-to-many relationship, the GetChildRows method returns an array of
rows taken from the child table:

‘ Display the names of the employees in the first department.
Dim drEmployees() As DataRow = dtDept.Rows(0).GetChildRows(“DeptEmp”)
Dim drEmp As DataRow
For Each drEmp in drEmployees

Debug.WriteLine(drEmp(“LastName”))
Next

‘ Display the number of employees in each department.
Dim dr As DataRow
For Each dr In dtDept.Rows

Debug.WriteLine(dr(“Name”).ToString & “, “ & _
dr.GetChildRows(“DeptEmp”).Length.ToString)

Next

C21613753.fm  Page 1076  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1077

A DataSet can contain multiple relationships and can even contain more
than one relationship between the same pair of tables. For example, the
Departments table might have a BossId field that contains the ID of the row in
Employees corresponding to the department’s boss. Here’s how you can set the
corresponding relationship:

‘ Add a new BossId column to the Departments table, and fill it with the
‘ ID of the first 3 employees.
dtDept.Columns.Add(“BossId", GetType(Integer))
For i = 0 To dtDept.Rows.Count - 1

dtDept.Rows(i)(“BossId”) = dtEmp.Rows(i)(“EmpId”)
Next
dtDept.AcceptChanges()

‘ Create another relationship between the Departments and Employees tables.
ds.Relations.Add(“DeptBoss", dtEmp.Columns(“EmpId”), dtDept.Columns(“BossId”))

Here’s the code that leverages the new relationship to print the list of
departments and the names of their bosses:

‘ List the name of each department and the name of its boss.
Dim dr As DataRow
For Each dr In dtDept.Rows

Debug.WriteLine(dr(“Name”).ToString & “, “ & _
dr.GetParentRow(“DeptBoss”)(“LastName”).ToString)

Next

The GetChildRows method supports a second DataRowVersion argument
that lets you decide whether you want to extract the original or current versions
of the child rows. In the next section, you’ll learn how to create calculated col-
umns that take advantage of the relationships existing in the DataSet.

You can remove an existing relationship by using the Remove or RemoveAt
method of the DataSet’s Relations collection. However, these methods throw an
exception if the DataRelation object can’t be removed from the collection. To
avoid this exception, you should test whether the relationship can be removed
by means of the CanRemove method:

‘ ds is the DataSet that holds the relationship.
Dim relDeptEmp As DataRelation = ds.Relations(“DeptEmp”)
If ds.Relations.CanRemove(relDeptEmp) Then

’ Remove the relationship only if it is safe to do so.
ds.Relations.Remove(relDeptEmp)

End If

Working with Expressions
Many ADO.NET properties and methods support custom expressions. For
example, you can assign an expression to the Expression property of a calcu-
lated DataColumn or pass an expression to the Filter method of a DataTable to

C21613753.fm  Page 1077  Monday, March 18, 2002  10:58 AM



1078 Part V Database Applications

extract a subset of all the rows. In all cases, the syntax of the expression you
create must obey the few simple rules that I summarize in this section.

The expression can contain numeric, string, and date constants; string
constants must be enclosed in single quotes, and date constants must be
enclosed in # characters. You can reference another column in the same table
by using its ColumnName property. If a column name contains special punctu-
ation characters, you should enclose the name between square brackets.

The four math operations are supported, as well as the modulo operation
(use the % symbol) and the string concatenation operator (use the + sign). All
the comparison operators are supported. When applied to strings, they perform
case-sensitive or case-insensitive comparisons depending on the CaseSensitive
property of the DataTable object. Here are a few examples of valid expressions:

FirstName + ’ ’ + LastName
UnitPrice * 0.80
BirthDate > #1/4/1980#

The LIKE operator is similar to the SQL operator of the same name; you
can use either the % or the * character as a wildcard, and they can appear any-
where in the second operand. For example, both the following expressions fil-
ter all employees whose last name starts with “A”:

LastName LIKE ’A*"
LastName LIKE ’A%”

The IN operator is also similar to the SQL operator of the same name and
lets you check that a column’s value is among those specified. For example,
you can filter only those employees whose DeptId is equal to 2, 3, or 4:

DeptId IN (2, 3, 4)

The expression evaluator also supports a few functions, which are listed
in Table 21-8. For example, suppose you want to create a calculated column
named Discount, whose value is equal to Total * .90 when Total is less than or
equal to 1000 and Total *.85 if Total is higher than 1000. The IIF function is what
you need:

dt.Columns.Add(“Discount", GetType(Double), _
 “IIF(Total <= 1000, Total * 0.9, Total * 0.85)”)

An expression can refer also to a field in another table if a relationship exists
between the current table and the other table. When working with relationships,
you can use two different syntaxes, depending on whether the other table is the
parent table or the child table in the relationship. For example, if there is a rela-
tionship named DeptEmp between the Departments and the Employees tables in
the DeptId column that they have in common, you can add a calculated column
to the Employees table that returns the name of the department, as follows:

C21613753.fm  Page 1078  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1079

‘ Extend the Employees table with a calculated column that
‘ returns the name of the department for that employee.
dtEmp.Columns.Add(“Department", GetType(String), “Parent(DeptEmp).Name)”)

The following example uses the DeptBoss relationship to extend the
Departments table with a calculated field equal to the name of the depart-
ment’s boss:

dtDept.Columns.Add(“BossName", GetType(String), _
 “Parent(DeptBoss).CompleteName”)

If the current table is the parent table of the relationship and you want to
reference a field in the child table, you use Child(relname).fieldname syntax.
However, because most relationships are of the one-to-many kind when seen
from the perspective of the parent table, in most cases what you really want
is to evaluate an aggregate function on the matching rows in the child table.
The expression engine supports all the usual aggregation functions, including
Count, Sum, Min, Max, Avg (average), StDev (standard deviation), and Var
(variance).

For example, you can leverage the DeptEmp relationship to extend the
Departments table with a calculated column that returns the count of employ-
ees in each department:

‘ Add a calculated column to the Departments table
‘ that returns the number of employees for each department.
dtDept.Columns.Add(“EmployeesCount", GetType(Integer), _

 “Count(Child(DeptEmp).EmpID)”)

Assuming that the Employees table has a Salary column, you can add
other calculated fields in the Departments table that evaluate to the minimum,
maximum, and average salary for the employees in each department:

dtDept.Columns.Add(“MinSalary", GetType(Double), _
 “Min(Child(DeptEmp).Salary)”)

dtDept.Columns.Add(“MaxSalary", GetType(Double), _
 “Max(Child(DeptEmp).Salary)”)

dtDept.Columns.Add(“AvgSalary", GetType(Double), _
 “Avg(Child(DeptEmp).Salary)”)

You often use aggregate functions together with the DataTable’s Compute
method, which offers a simple method to extract data from all or a subset of the
rows in a DataTable object. This method takes an expression and a filter that
specifies the rows that are used to compute the expression: Evaluate the aver-
age salary of all employees.

Debug.WriteLine(dtEmp.Compute(“Avg(Salary)", Nothing))
‘ Evaluate the average salary for employees in a given department.
Debug.WriteLine(dtEmp.Compute(“Avg(Salary)", “DeptId = 2”))

C21613753.fm  Page 1079  Monday, March 18, 2002  10:58 AM



1080 Part V Database Applications

Enforcing Constraints
The DataTable object supports the creation of constraints, where a constraint is
a condition that must be met when you add or modify a row in the table. Two
different types of constraints are supported: unique constraints and foreign-key
constraints.

A unique constraint mandates that all the values in a column or a collec-
tion of columns must be unique—in other words, you can’t have two rows that
contain the same value for the column or combination of columns specified in
the constraint. In the majority of cases, the constraint affects only one column:
this is the case with the EmpId field in the Employees table. You can enforce
this type of constraint by simply setting the column’s Unique property to True
when you create the column:

‘ The DeptId field must be unique.
Dim dcDeptId As DataColumn = dtDept.Columns.Add(“DeptId", GetType(Integer))
dcDeptId.Unique = True

In more complex cases, you have multiple columns whose combination
must be unique. For example, let’s say that the combination of FirstName and
LastName columns must be unique. (In other words, you can’t have two people
with the same name.) To enforce this type of constraint, you must create a
UniqueConstraint object, pass an array of columns to its constructor, and add
the constraint to the table’s Constraints collection:

Table 21-8 Functions Allowed in Expressions

Syntax Description Example

Convert(expr, type) Converts an expression to a 
.NET type.

Convert(salary, ‘System.Double’)

Len(string) Returns the length of a string. Len(FirstName)

IsNull(expr, ifnullexpr) Returns the first operand if it 
isn’t DBNull or Nothing. Oth-
erwise, it returns the second 
value.

IsNull(DeptId, − 1)

IIf(expr, truevalue, 
falsevalue)

Returns the second argument 
if the expression is True. Oth-
erwise, it returns the third 
argument.

IIf(total >= 0, 100, − 100)

Substring(string, start, 
length)

Extracts a portion of a string 
expression. The start index is 
1-based.

Substring(MiddleName, 1, 2)

C21613753.fm  Page 1080  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1081

‘ Prepare the array of involved DataColumn objects.
Dim cols() As DataColumn = { dtEmp.Columns(“LastName”), _

dtEmp.Columns(“FirstName”) }
‘ Create the UniqueConstraint object, assigning it a name.
Dim uc As New UniqueConstraint(“UniqueName", cols)
‘ Add it to the table’s Constraints collection.
dtEmp.Constraints.Add(uc)

Or you can do everything with a single (but less readable) statement:

dtEmp.Constraints.Add(New UniqueConstraint(New DataColumn() _
{ dtEmp.Columns(“LastName”), dtEmp.Columns(“FirstName”)}))

Now you get an error if you attempt to add a new employee who has the same
first name and last name as an employee already in the table:

Dim dr As DataRow = dtEmp.NewRow
dr(“FirstName”) = dtEmp.Rows(0)(“FirstName”)
dr(“LastName”) = dtEmp.Rows(0)(“LastName”)
dtEmp.Rows.Add(dr) ’ This statement causes an error.

Constraints are active only if the DataSet’s EnforceConstraints property is
True (the default value).

You have a foreign-key constraint when the values in a column of a table
must match one of the existing values in a column in another table. For exam-
ple, you can decide that the user isn’t able to add an employee whose DeptId
field is null or doesn’t point to an existing row in the Departments table. You
would create such a constraint this way:

‘ Create a foreign-key constraint.
Dim fkrelDeptEmp As New ForeignKeyConstraint(“FKDeptEmp", _

dtDept.Columns(“DeptId”), dtEmp.Columns(“DeptId”))
‘ Add it to the child table’s Constraints collection.
dtEmp.Constraints.Add(fkrelDeptEmp)

Most of the time, however, you don’t have to explicitly create a Foreign-
KeyConstraint object because you can use the foreign-key constraint that’s
implicitly defined by a relationship between tables and that’s available through
the ChildKeyConstraint property. (A relationship also creates a unique con-
straint on the parent table and makes it available through the ParentKeyCon-
straint property.) The following line of code retrieves a reference to the
ForeignKeyConstraint object implied by the relationship between Departments
and Employees:

Dim fkrel As ForeignKeyConstraint = ds.Relations(“DeptEmp”).ChildKeyConstraint

C21613753.fm  Page 1081  Monday, March 18, 2002  10:58 AM



1082 Part V Database Applications

Note If you have defined a relationship between two tables, the
attempt to set another foreign-key constraint over the same columns
throws an exception. Creating the foreign-key constraint first and then
the relationship on the same columns doesn’t raise an error because
the relationship reuses the existing constraints. (You can prove it by
checking that the relationship’s ChildKeyConstraint property returns
the original DataConstraint object.)

A foreign-key constraint lets you exert more control over what happens
when the end user deletes a row or updates the key field of a row in the parent
table. Three properties of the ForeignKeyConstraint object come into play in
this case:

� DeleteRule This property determines what happens to the rows in
the child table when a row in the parent table is deleted. The valid
values for this property are Cascade (default, child rows are deleted);
None (no action is taken); SetDefault (child column is set to its
default value); and SetNull (child column is set to DBNull).

� UpdateRule This property specifies what happens to rows in the
child table when the key field of a row in the parent table is modi-
fied. The valid values for this property are Cascade (default, child
column is modified to reflect the new key value); None (no action is
taken); SetDefault (child column is set to its default value); and Set-
Null (child column is set to DBNull).

� AcceptRejectRule This property tells how changes in the child
table are rolled back when an update operation in the parent table
fails because of an error or because the application calls the
RejectChanges method. This property can take only one of two val-
ues: None (no action occurs) or Cascade (changes are cascaded
across the relationship).

Constraints associated with relationships are temporarily suspended dur-
ing an edit operation until changes are confirmed with the AcceptChanges
method. When this happens, constraints are reenabled and an error can occur
if the new data doesn’t comply with existing constraints. The AcceptRejectRule
property determines what happens to child rows when such an error occurs.

You must observe some limitations to the settings that you can assign to
the DeleteRule and UpdateRule properties. For example, you can’t really use

C21613753.fm  Page 1082  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1083

the None value. In fact, after the delete or edit operation, the child row would
point to a nonexistent row in the parent table, and this condition would violate
the foreign-key constraint itself. In addition, if the child table contains calcu-
lated properties that use the relationship, you can’t use the SetNull value for
most cases.

Let’s see how you can set up a foreign-key constraint that automatically
updates child rows when the parent row is changed and sets the foreign key in
child rows to DBNull if the parent row is deleted:

‘ Note: this code throws an exception if there is already a relationship
‘ between the Department.DeptId and Employees.DeptId fields.
Dim fkrelDeptEmp As New ForeignKeyConstraint(“FKDeptEmp", _

dtDept.Columns(“DeptId”), dtEmp.Columns(“DeptId”))
dtEmp.Constraints.Add(fkrelDeptEmp)

fkrelDeptEmp.DeleteRule = Rule.SetNull
fkrelDeptEmp.UpdateRule = Rule.Cascade
fkrelDeptEmp.AcceptRejectRule = AcceptRejectRule.None

Figure 21-4 shows what happens when the user deletes a row in the par-
ent table when the DeleteRule property is set as in the preceding code snippet.

F21CN04

Figure 21-4. When the end user deletes a department in the upper grid,
the DeptId fields of the child rows in the Employees table become null
(lower grid).

The DataAdapter Class
In the first portion of this chapter, I showed you how to create a DataSet object,
load it with data produced by your application (or read from a text file), create

C21613753.fm  Page 1083  Monday, March 18, 2002  10:58 AM



1084 Part V Database Applications

constraints and relationships, and define calculated fields. In other words, I
showed you how to use the DataSet as a sort of scaled-down client-side data-
base that your code defines and fills with data. While this functionality can be
very useful in many scenarios, the majority of .NET applications have to process
data coming from a real database, such as Access, SQL Server, or Oracle.

The key to using the DataSet in this way is the DataAdapter object, which
works as a connector between the DataSet and the actual data source. The
DataAdapter is in charge of filling one or more DataTable objects with data
taken from the database so that the application can then close the connection
and work in a completely disconnected mode. After the end user has per-
formed all his or her editing chores, the application can reopen the connection
and reuse the same DataAdapter object to send changes to the database.

Admittedly, the disconnected nature of the DataSet makes life for us
developers more complex, but it greatly improves its versatility, in my opinion.
You can now fill a DataTable with data taken from any data source—whether
it’s SQL Server, a text file, or a mainframe—and process it with the same rou-
tines, regardless of its origin. The decoupled architecture based on the DataSet
and the DataAdapter makes it possible to read data from one source and send
updates to another source, should it be necessary. You have a lot more freedom
when working with ADO.NET but also many more responsibilities.

All the code samples that follow assume that a proper connection string
has been defined previously and stored in one of the following global variables:

‘ Connection string to Biblio.mdb using the OLE DB .NET Data Provider
Public BiblioConnString As String = “Provider=Microsoft.Jet.OLEDB.4.0;” _

& “Data Source=C:\Program Files\Microsoft Visual Studio\VB98\Biblio.mdb"
‘ Connection string to SQL Server’s Pubs using the OLE DB .NET Data Provider
Public OledbPubsConnString As String = “Provider=SQLOLEDB.1;Data Source=.;” _

& “Integrated Security=SSPI:Initial Catalog=Pubs"
‘ Connection string to Pubs using the SQL Server .NET Data Provider
Public SqlPubsConnString As String = “Data Source=.;” _

& “Integrated Security=SSPI:Initial Catalog=Pubs”

Introducing the DataAdapter
The first thing you need to know about the DataAdapter is that there’s actually
one DataAdapter class for each .NET data provider, so you have the OleDb-
DataAdapter and the SqlDataAdapter classes. All DataProvider objects expose
the same set of properties and methods because they inherit from the DbData-
Adapter abstract class. All the .NET data providers that are to be released in the
future will include their own DataAdapter because the DataAdapter must know
how to read from and update a specific data source. Except for their names and
a few other details—such as how they deal with parameters—you use the Ole-
DbDataAdapter and the SqlDataAdapter in exactly the same way. (See Table 21-9
for their main properties, methods, and events.)

C21613753.fm  Page 1084  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1085

Reading Data from a Database
The DataAdapter’s constructor is overloaded to take zero, one, or two argu-
ments. In its most complete form, you pass to it a SQL SELECT statement (or an

Table 21-9 Main Properties, Methods, and Events of the OleDbDataAdapter and 
SqlDataAdapter Classes

Category Name Description

Properties SelectCommand The SQL statement used to read the data source.

DeleteCommand The SQL statement used to delete rows in the 
data source.

InsertCommand The SQL statement used to insert rows in the data 
source.

UpdateCommand The SQL statement used to update rows in the 
data source.

TableMappings The collection of table mappings, which maintain 
the correspondence between columns and tables 
in the data source and columns and tables in the 
DataSet.

MissingMappingAction The action to take when incoming data doesn’t 
have a matching table or column.

MissingSchemaAction The action to take when an existing DataSet 
schema doesn’t match incoming data.

AcceptChangesDuringFill Determines whether the AcceptChanges method 
is called after a DataRow has been added to the 
DataTable.

Methods Fill Adds or refreshes rows in a DataSet with data 
coming from a DataAdapter or an ADO 
Recordset.

FillSchema Adds a DataTable to the DataSet and configures 
the schema of the new table based on schema in 
the data source.

Update Updates the data source with the appropriate 
insert, update, and delete SQL statements.

GetFillParameters Gets the parameters set by the user when execut-
ing a SQL SELECT statement.

Events RowUpdating Fires before sending a SQL command that 
updates the data source.

RowUpdated Fires after sending a SQL command that updates 
the data source.

FillError Fires when an error occurs during a Fill operation.

C21613753.fm  Page 1085  Monday, March 18, 2002  10:58 AM



1086 Part V Database Applications

ADO.NET Command object containing a SQL SELECT statement) and a Connec-
tion object, as in this code snippet:

Dim cn As New OleDbConnection(BiblioConnString)
cn.Open()

‘ Create a DataAdapter that reads and writes the Publishers table.
Dim sql As String = “SELECT * FROM Publishers"
Dim da As New OleDbDataAdapter(sql, cn)

Or you can create a DataAdapter and then assign an ADO.NET Command
object to its SelectCommand property:

da = New OleDbDataAdapter()
da.SelectCommand = New OleDbCommand(sql, cn)

Filling a DataTable
Once you’ve created a DataAdapter object and defined its SELECT command,
you can use the object to fill an existing or new DataTable of a DataSet with the
Fill method, which takes the name of the target DataTable in its second argu-
ment:

‘ Create a DataSet.
Dim ds As New DataSet()
‘ Read the Publishers database table into a local DataTable.
da.Fill(ds, “Publishers”)
‘ Close the connection.
cn.Close()

Because of the disconnected nature of the DataSet, the action of opening
a connection only for the short time necessary to read data from a single data-
base table is so frequent that Microsoft engineers provided the DataAdapter
object with the ability to open the connection automatically and close it imme-
diately at the completion of the Fill method. For this reason, the preceding code
can be written in a more concise way, as you see here:

‘ Define the connection; no need to open it.
Dim cn As New OleDbConnection(BiblioConnString)
Dim da As New OleDbDataAdapter(“SELECT * FROM Publishers", cn)
Dim ds As New DataSet()
‘ Read the Publishers table; no need to open or close the connection.
da.Fill(ds, “Publishers”)

(Of course, you shouldn’t use this technique when reading data from multiple
tables, and you should open the connection manually once and close it after-
ward.) The Fill method is overloaded to take a variety of arguments, including
a reference to an existing DataTable object. You can also omit the name of the
target table, in which case a DataTable object named Table is created by

C21613753.fm  Page 1086  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1087

default. However, I strongly advise you against doing this because it makes
your code less readable to other programmers who aren’t aware of this detail.

In most real-world applications, you should avoid reading resultsets con-
taining more than a few hundred rows. You can do this by refining the WHERE
clause of the SELECT command or by using an overloaded form of the Fill
method that takes the starting record and the maximum number of rows to
read. To determine how many rows were actually read, you can check the
method’s return value:

‘ Read only the first 100 rows of the Publishers table.
Dim numRows As Integer = da.Fill(ds, 0, 100, “Publishers”)

You can then provide the user with the ability to navigate through pages of the
resultset, possibly by using the usual Previous, Next, First, and Last buttons:

‘ Read Nth page; return number of rows on the page.
‘ (Assuming that the da and ds variables have been correctly initialized)
Function ReadPage(ByVal n As Integer) As Integer

ReadPage = da.Fill(ds, (n – 1) * 100, 100, “Publishers”)
End Sub

Another simple way to limit the amount of information read from the data-
base is by using parameters in the WHERE clause of the SQL command. In this
case, you can create a parameterized OleDbCommand or SqlCommand object
by using the guidelines I describe in the “Parameterized Commands” section in
Chapter 20, and you can pass it to the constructor or the SelectCommand prop-
erty of the DataAdapter, as in the following example:

Dim cn As New OleDbConnection(BiblioConnString)

‘ Create a Command object with parameters.
Dim sql As String = “SELECT * FROM Publishers WHERE Name LIKE ?"
Dim cmd As New OleDbCommand(sql, cn)
‘ Create the parameter with an initial value.
cmd.Parameters.Add(“PubNameLike", “S%”)

‘ Create the DataAdapter based on the parameterized command.
Dim da As New OleDbDataAdapter(cmd)
‘ Get publishers whose name begins with “S".
da.Fill(ds, “Publishers”)

‘ Add publishers whose name begins with “M".
cmd.Parameters(0).Value = “M%"
da.Fill(ds, “Publishers”)

The Fill method of the OleDbDataAdapter object can even take an ADO
Record or Recordset object as an argument. This lets your .NET application use
a method in an existing COM component that reads data from the database and

C21613753.fm  Page 1087  Monday, March 18, 2002  10:58 AM



1088 Part V Database Applications

returns it as an ADO Recordset. Keep in mind, however, that this is a one-way
operation: you can read the contents of an ADO Recordset or a Record object,
but you can’t update them. The following code fills a DataSet by using an ADO
Recordset created with the adodb library and COM Interop, which is something
that you’ll never do in a real application, but the example shows how you can
proceed when you have a middle-tier component that returns a query result as
an ADO Recordset:

‘ Open an ADO DB connection toward SQL Server’s Pubs database.
Dim adoCn As New ADODB.Connection()
adoCn.Open(OledbPubsConnString)
‘ Read the Publishers table using a firehose cursor.
Dim adoRs As New ADODB.Recordset()
adoRs.Open(“SELECT * FROM Publishers", adoCn)

‘ Use the Recordset to fill a DataSet table.
Dim ds As New DataSet()
Dim da As New OleDb.OleDbDataAdapter()
‘ (The following line automatically closes the Recordset.)
da.Fill(ds, adoRs, “Publishers”)
‘ Close the connection.
adoCn.Close()

A great feature of the Fill method is its ability to support SQL batch com-
mands that return multiple resultsets if the back-end database supports them.
For example, you can retrieve multiple tables of data from SQL Server (regard-
less of the .NET data provider you’re using) as follows:

‘ Access SQL Server using the OLE DB .NET Data Provider.
Dim cn As New OleDbConnection(OledbPubsConnString)

‘ Create a DataAdapter that reads three tables.
Dim sql As String = “SELECT * FROM Publishers;SELECT * FROM Titles;” _

& “SELECT * FROM Authors"
Dim da As New OleDbDataAdapter(sql, cn)
‘ Create and fill the DataSet’s tables.
da.Fill(ds, “Publishers”)

‘ Change the names of the generated tables.
ds.Tables(1).TableName = “Titles"
ds.Tables(2).TableName = “Authors”

In the preceding code, the Fill method creates three tables named Publish-
ers, Publishers1, and Publishers2, so we need to change the last two names
manually. If you’re retrieving data from SQL Server, you should use this tech-
nique because it minimizes the number of round-trips to the server.

C21613753.fm  Page 1088  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1089

Dealing with Filling Errors
Most of the time, the Fill method shouldn’t raise any error, especially if the
structure of the DataSet perfectly mirrors the metadata in the data source. In some
cases, however, this method can throw an exception, such as when the row
being read violates the constraints of a DataColumn or the data being read can’t
be converted to a .NET data type without losing precision. When such a problem
occurs, ADO.NET throws an InvalidCastException exception. You can handle this
exception the way you would any other exception, but you can get even better
control of the read operation if you write a handler for the FillError event.

The second argument passed to this event is a FillErrorEventArgs object,
which exposes the following information: DataTable (the table being filled),
Errors (the error that occurred), Values (an Object array that contains values for
all the columns in the row being updated), and Continue (a Boolean value that
you can set to True to continue the fill operation despite the error). Here’s an
example that sets up a FillError handler to deal with overflow errors gracefully:

Sub FillData()
Dim cn As New OleDbConnection(OledbPubsConnString)
Dim da As New OleDbDataAdapter(“SELECT * FROM Publishers", cn)
’ Create a handler for the FillError event.
AddHandler da.FillError, AddressOf FillError
’ Create and fill the DataSet’s table.
da.Fill(ds, “Publishers”)

End Sub

Sub FillError(ByVal sender As Object, ByVal args As FillErrorEventArgs)
If TypeOf args.Errors Is System.OverflowException Then

’ Add here the code that handles overflow errors.
§
’ Continue to fill the DataSet.
args.Continue = True

End If
End Sub

Note that the FillError event fires only for errors that occur when filling the
DataSet. No event fires if the error occurs at the database level.

Mapping DataBase Tables
By default, the DataAdapter’s Fill method creates a DataTable whose columns
have the same name and type as the columns in the source database table.
However, there are occasions when you need more control over how columns
are imported—for example

� You want to establish a DataTable name that’s different from the
name that the table has in the database. This difference can be useful
when you’re importing the same table more than once, each time
with a different WHERE clause.

C21613753.fm  Page 1089  Monday, March 18, 2002  10:58 AM



1090 Part V Database Applications

� You want to change the names of the source columns to make them
more readable. This change might be necessary when you want to
create a strongly typed DataSet (see later in this chapter) and the
original names contain invalid characters.

� You need to assign a name to calculated expressions that don’t have
an AS clause in the original SQL SELECT statement (as in SELECT
@@IDENTITY FROM MyTable).

You can perform all of these tasks, and a few others, by means of the
DataAdapter’s TableMappings collection. This collection contains zero or more
DataTableMapping objects, each one defining the name of the source database
table (the SourceTable property) and the name of the corresponding Data-
Table (the DataSetTable property). Each DataTableMapping object exposes
also a collection of DataColumnMapping objects, which store the mapping
between columns in the database table (the SourceColumn property) and col-
umns in the DataTable (the DataSetColumn property). Figure 21-5 illustrates the
relationships among all these objects and their properties. All these objects are
in the System.Data.Common namespace.

F21CN05

Figure 21-5. The TableMappings collection and its dependent classes.

����%������

&���������	����������

����&���������	�
��������	

!��"��������

����&���������	�

 �����&������������

���� ��&������������


���"	�����	����������

����
���"	�����	�
��������	

����
���"	�����	�

 �����
���"	��������

���� ��
���"	��������

!��"��������

C21613753.fm  Page 1090  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1091

If the meaning of these objects is clear, creating a mapping between a
database and a DataSet is simple and ultimately resolves to calling the Add
method of the right collection. For example, let’s see how you can map the
Publishers table in SQL Server’s Pubs database to a client-side DataTable named
PublishersData and change the names of a few columns in the process:

Dim cn As New SqlConnection(SqlPubsConnString)
Dim sql As String = “SELECT * FROM Publishers"
Dim da As New SqlDataAdapter(sql, cn)

‘ Adds an element to the TableMappings collection.
‘ (Returns a DataTableMapping object.)
With da.TableMappings.Add(“Publishers", “DataPublishers”)

’ Add two elements to the ColumnMappings collection.
.ColumnMappings.Add(“pub_id", “ID”)
.ColumnMappings.Add(“pub_name", “Name”)

End With

‘ Fill the DataSet, using the prepared mappings.
‘ (Note that the second argument is the source database table’s name.)
da.Fill(ds, “Publishers”)

(Note that any column that isn’t explicitly mapped is imported with its original
name.) Two more properties of the DataAdapter object define what happens if
the mapping isn’t complete or correct:

� The MissingMappingAction property determines what happens if a
table or a column defined in the mapping is missing from the data-
base. It can take three values: Passthrough (the behavior depends on
the MissingSchemaAction property), Ignore (missing columns are
ignored), and Error (an exception is thrown).

� The MissingSchemaAction property determines what happens if the
DataSet doesn’t match incoming data. The valid values are Add (adds
the necessary columns to complete the schema), AddWithKey (adds
the necessary columns and primary key to complete the schema),
Ignore (extra columns are ignored), and Error (an exception is thrown).

The default values are Passthrough for MissingMappingAction and Add for
MissingSchemaAction, which means that the DataAdapter extends the DataSet
with all the necessary columns. Another common combination of values is
Ignore for both properties, which means that a column is imported only if it
exists already in the DataSet. For example, consider the following code:

Dim cn As New SqlConnection(SqlPubsConnString)
Dim sql As String = “SELECT * FROM Publishers"

(continued)

C21613753.fm  Page 1091  Monday, March 18, 2002  10:58 AM



1092 Part V Database Applications

Dim da As New SqlDataAdapter(sql, cn)

‘ Adds an element to the TableMappings collection.
With da.TableMappings.Add(“Publishers", “DataPublishers”)

.ColumnMappings.Add(“pub_id", “ID”)

.ColumnMappings.Add(“pub_name", “Name”)
End With

‘ Define the structure of the DataPublishers table in advance.
‘ (Note that column names must match target names defined by the mapping.)
With ds.Tables.Add(“DataPublishers”)
.Columns.Add(“ID", GetType(String))
.Columns.Add(“Name", GetType(String))
End With
‘ Ignore any other column.
da.MissingSchemaAction = MissingSchemaAction.Ignore

‘ Fill the DataSet, using the prepared mappings.
da.Fill(ds, “Publishers”)

The effect of the preceding routine is to fill only the ID and Name columns of
the DataPublishers table, ignoring all other columns implied by the SELECT
command. Remember that you need to include the key column in the list of
fields being retrieved only if you plan to later update the data source or to issue
another Fill method to refresh the contents of the DataTable object. (If key col-
umns aren’t included in the DataTable, any subsequent Fill method adds the rows
being read instead of using them to replace the rows already in the DataTable.)

Preloading the Database Structure
You might often want to fill the DataSet with the structure of the database with-
out being interested in getting any data. This is the case when the end user
wants to enter new records but isn’t interested in the records already in the
database. The solution that classic ADO offered for this very common problem
was sort of a hack: you had to retrieve an empty Recordset to minimize the
amount of data you sent along the wires, typically by using a SELECT command
with a WHERE expression that always evaluated to False.

The ADO.NET DataAdapter object offers a more streamlined solution, in
the form of the FillSchema method. This method takes the target DataSet; an
argument that specifies whether the original table names are used (Sche-
maType.Source, the default value) or the current table mappings are honored
(SchemaType.Mapped); and the name of the DataTable that must be created.
Here are two examples:

‘ Fill the Publishers DataTable with the schema of the Publishers
‘ database table, using original column names.
da.FillSchema(ds, SchemaType.Mapped, “Publishers”)

C21613753.fm  Page 1092  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1093

‘ Fill the DataPublishers DataTable with the schema of the Publishers
‘ database table, using mapped column names.
With da.TableMappings.Add(“Publishers", “DataPublishers”)

’ Add two elements to the ColumnMappings collection.
.ColumnMappings.Add(“pub_id", “ID”)
.ColumnMappings.Add(“pub_name", “Name”)

End With
da.FillSchema(ds, SchemaType.Mapped, “Publishers”)

The FillSchema method correctly sets the name, type, MaxLength,
AllowDBNull, ReadOnly, Unique, and AutoIncrement properties of each col-
umn. (You must set the AutoIncrementSeed and AutoIncrementStep properties
manually, however.) The method also retrieves existing table constraints and
sets the PrimaryKey and Constraints properties accordingly.

Preloading the database schema is important because it ensures that pri-
mary key fields are always retrieved and stored in the DataSet. When subse-
quent Fill methods are issued, new rows are matched with existing rows on
their primary key and new rows replace old rows accordingly. If the DataSet
held no primary key information, new rows would always be appended to
existing ones and duplicate rows would result. If you don’t preload a DataSet
with the database structure, you should ensure that all your SELECT commands
include the primary key column or a column whose Unique property is True. If
in doubt, you should set the MissingSchemaAction property to AddWithKey to
ensure that primary key information is automatically retrieved if necessary.

If the SQL command associated with the SqlDataAdapter contains multiple
SELECT statements, the SQL Server .NET Data Provider creates multiple tables
whose names are obtained by appending an ordinal to the name of the table
specified in the FillSchema method. This procedure is similar to what happens
with the Fill method. For example, the following code fills three DataTable
objects with the structure of three tables in the Pubs database:

Dim cn As New SqlConnection(SqlPubsConnString)
Dim sql As String = “SELECT * FROM Publishers;SELECT * FROM Titles;” _

& “SELECT * FROM authors"
Dim da As New SqlDataAdapter(sql, cn)
da.FillSchema(ds, SchemaType.Source, “Publishers”)

‘ Change the names of the second and third tables.
ds.Tables(1).TableName = “Titles"
ds.Tables(2).TableName = “Authors”

When you’re working with the OLE DB .NET Data Provider, the
FillSchema method ignores any resultset after the first one, regardless of
whether the back-end database supports multiple resultsets. To load the struc-
ture of all the tables, use the Fill method with the MissingSchemaAction prop-
erty set to AddWithKey.

C21613753.fm  Page 1093  Monday, March 18, 2002  10:58 AM



1094 Part V Database Applications

Warning The FillSchema method of the OleDbDataAdapter object
doesn’t work well with the Oracle OLE DB Provider (MSDAORA)
because it always retrieves primary key and indexed columns, even if
the original SELECT command doesn’t include them. The problem
occurs when you subsequently use the Fill method to fill the DataTable
because this method reads only the columns specified in the SELECT
command and would therefore leave the primary key columns blank. If
the extra columns are not nullable, as is often the case, this results in
an error. The solution is simple: always include primary key or indexed
columns in the SELECT statement when working with Oracle.

Updating the Database
Most applications that work with databases need to update data in the original
tables sooner or later. With ADO.NET, you have two choices when it’s time to
update a database:

� You can use ADO.NET Command objects with appropriate INSERT,
DELETE, and UPDATE SQL statements. This is what you usually do
when you work in connected mode and read data by means of a
DataReader object.

� You can use the Update method of the DataAdapter object to send
changed rows in a DataSet to a database. In this case, you usually
use the same DataAdapter object that you created to read data into
the DataSet, even though this isn’t a requirement. (For example, you
might have filled the DataSet manually via code without using a
DataAdapter object.)

The DataAdapter’s Update method is conceptually similar to the ADO
Recordset object’s UpdateBatch method, which you might have used with opti-
mistic batch update locking in pre-.NET days. If you’re familiar with discon-
nected ADO programming, you’ll find yourself at ease with the ADO.NET
conceptual model, even though the two models differ in many details. (If you
aren’t familiar with disconnected ADO Recordsets, you should read Chapter 14
of my Programming Microsoft Visual Basic 6, on the companion CD.)

The real issue when working in disconnected mode is that you have to
detect and resolve update conflicts. You have a conflict when another user has
modified or deleted the same record that you want to update or delete or has

C21613753.fm  Page 1094  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1095

inserted a new record that has the same primary key as a record that you have
inserted. How your application reacts to a conflict depends on the application’s
own logic: for example, you might follow the simple strategy by which the first
update wins and subsequent ones are ignored; or you might decide that the last
update wins. I’ll explain these conflict-resolution strategies later in this chapter;
for now, let’s focus on the basics of update operations under the simplistic
assumption that there are no update conflicts, an assumption that’s realistic only
when you’re working with single-user applications.

Warning The code in the following sections modifies the Biblio.mdb
demo database or SQL Server’s Pubs database. Before running this
code, you might want to make a copy of the database so that you can
restore it later. Also note that you might need to restore it before run-
ning the same sample again—for example, if you want to compare the
outcomes of different update strategies.

Getting Familiar with Update Concepts
You can update data in a DataSet by means of the DataAdapter’s Update
method, which takes one of the following sets of arguments:

� A DataTable object The designated table is used as the source for
the update operation.

� A DataSet plus the name of a DataTable This is just another way
to indicate the table to be used as the source for the update opera-
tion. (If you omit the table name, the command attempts to use the
default DataTable named Table.)

� An array of DataRow objects Only these rows are used as a
source for the update operation. This variant is useful when you
need more control over the order in which rows of a table are sent
to the database.

In all cases, the Update method returns the number of rows that have
been successfully updated. The key to performing batch updates with
ADO.NET is a group of three properties of the DataAdapter object: Insert-
Command, UpdateCommand, and DeleteCommand. Here’s how the update
mechanism works.

When an Update command is issued, the DataAdapter checks the Row-
State property of each row specified as a source for the update operation. If the

C21613753.fm  Page 1095  Monday, March 18, 2002  10:58 AM



1096 Part V Database Applications

state is Added, the DataAdapter issues the SQL command specified in the
InsertCommand property. If the state is Modified, the DataAdapter uses the SQL
command in the UpdateCommand property. If the state is Deleted, the com-
mand in the DeleteCommand property is used instead. (See Figure 21-6.)

F21CN06

Figure 21-6. How the DataAdapter’s Update method works.

The InsertCommand, UpdateCommand, and DeleteCommand properties
must be assigned actual ADO.NET Command objects with parameters. You can
create these commands yourself or generate them more easily by using an aux-
iliary CommandBuilder object. The main drawbacks of the latter technique are
that the auxiliary CommandBuilder object must execute the SELECT command
to retrieve the metadata, so it requires an additional round-trip to the server and
adds overhead to your application. Because of its simplicity, however, I’ll
explain the technique based on the CommandBuilder object first.

Each .NET data provider comes with its own CommandBuilder class, so
you’ll work with either the OleDbCommandBuilder or the SqlCommandBuilder
object. The following code snippet creates a DataAdapter from a simple SELECT
statement and then uses the CommandBuilder object to generate the three xxx-
Command properties:

‘ Connect to Pubs using the OLE DB .NET Data Provider.
Dim cn As New OleDbConnection(OledbPubsConnString)
cn.Open()
Dim sql As String = “SELECT * FROM Publishers"
Dim da As New OleDbDataAdapter(sql, cn)
‘ Ensure that the primary key is set correctly.
Dim ds As New DataSet()
da.FillSchema(ds, SchemaType.Source, “Publishers”)
‘ Fill the DataTable.
da.Fill(ds, “Publishers”)

‘ Create an auxiliary CommandBuilder object for this DataAdapter.
Dim cmdBuilder As New OleDbCommandBuilder(da)
‘ Use it to generate the three xxxCommand objects.
da.InsertCommand = cmdBuilder.GetInsertCommand

!	����
�""�	�

4�����
�""�	�

������
�""�	�

���� ��

�������
����%������ %����

��������

�������

���������������

�������

C21613753.fm  Page 1096  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1097

da.DeleteCommand = cmdBuilder.GetDeleteCommand
da.UpdateCommand = cmdBuilder.GetUpdateCommand

We’re now able to modify the local DataSet and send the updated rows to
the database:

With ds.Tables(“Publishers”)
’ Modify the first record (just append 3 asterisks to the pub_name field).
.Rows(0)(“pub_name”) = .Rows(0)(“pub_name”).ToString & “ ***"
’ Add a new record.
Dim dr As DataRow = .NewRow
dr(“pub_id”) = “9988"
dr(“pub_name”) = “VB2TheMax"
dr(“city”) = “Bari"
dr(“country”) = “Italy"
.Rows.Add(dr)

End With

‘ Send changes to the database, and disconnect.
da.Update(ds, “Publishers”)
cn.Close()

If you now browse the Publishers table in Pubs, you see that the first
record has been changed and that a new record has been added near the end.

Note The code should not invoke the AcceptChanges method on the
DataSet. This is a very important detail: this method resets the Row-
State property of all rows to Unchanged, thus making the rows appear
as if they have never been modified by the application.

The preceding code snippet keeps the connection open while the appli-
cation adds, modifies, and deletes rows. This approach makes sense when the
editing operations are performed through code, but it works against the overall
scalability if editing operations are performed by end users (who seem to have
a steady habit of taking a coffee break in the middle of an editing session). Most
of the time, it makes sense to close the connection immediately after the Fill
method and reopen it immediately before the Update method. You don’t even
need to explicitly open and close the connection if you’re reading and updating
a single table because these two methods can do it for you. In the end, your
typical code in a disconnected environment becomes

C21613753.fm  Page 1097  Monday, March 18, 2002  10:58 AM



1098 Part V Database Applications

Dim cn As New OleDbConnection(OledbPubsConnString)
Dim da As New OleDbDataAdapter(“SELECT * FROM Publishers", cn)
‘ Fill the DataSet table.
‘ (No need to explicitly open and close the connection.)
da.Fill(ds, “Publishers”)

‘ Add, modify, or remove rows here, or let the user do it.
§

‘ Send changes to the database.
‘ (Again, no need to explicitly open and close the connection.)
da.Update(ds, “Publishers”)

Remember, however, that this code works well only if you’re reading and
updating a single table. When multiple tables are used, you should open the
connection before the read operation and close it immediately afterward to
avoid a useless close and reopen operation:

Dim cn As New OleDbConnection(OledbPubsConnString)
Dim da As New OleDbDataAdapter(“SELECT * FROM Publishers", cn)
Dim da2 As New OleDbDataAdapter(“SELECT * FROM Authors", cn)
‘ Fill the DataSet table.
cn.Open() ’ Open the connection explicitly.
da.Fill(ds, “Publishers”)
da2.Fill(ds, “Authors”)
cn.Close() ’ Close the connection explicitly.

‘ Add, modify, or remove rows here, or let the user do it.
§

‘ Send changes to the database.
cn.Open() ’ Open the connection explicitly.
da.Update(ds, “Publishers”)
da2.Update(ds, “Authors”)
cn.Close() ’ Close the connection explicitly.

A last tip: you can query the DataSet’s HasChanges property to detect
whether it contains one or more DataTable objects with modified rows. If this
property returns True, you can use the GetChanges method to build a second
DataSet that contains only the rows that are actually modified and then update
only those tables whose Rows collection contains elements:

If ds.HasChanges Then
’ Build another DataSet that contains only modified rows.
Dim ds2 As DataSet = ds.GetChanges()
Dim dt As DataTable
’ Update each data table individually.
For Each dt in ds2.Tables

If dt.Rows.Count > 0 Then

C21613753.fm  Page 1098  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1099

’ This table contains modified rows.
Debug.WriteLine(“Updating table “ & dt.TableName)
’ Proceed with the update operation.
§

End If
Next

End If

You can achieve the same result in other ways as well. For example, you
can use the DataTable’s GetChanges method to retrieve the modified rows in a
table. You can also pass an argument to both the DataSet’s GetChanges method
and the DataTable’s GetChanges method to retrieve only the rows that have
been added, deleted, or modified:

‘ Check whether there are deleted rows in the Publishers table.
Dim dt2 As DataTable = _

ds.Tables(“Publishers”).GetChanges(DataRowState.Deleted)
If dt2.Rows.Count > 0 Then

’ Process deleted rows in the Publishers table.
§

End If

Understanding the CommandBuilder Object
To understand the benefits and disadvantages of using the CommandBuilder
object, you need to take a closer look at the SQL commands that it generates for
the insert, delete, and update operations in the preceding code example. Let’s
start with the INSERT command that the OleDbCommandBuilder object has
created for us to manage insertions in the Publishers table:

INSERT INTO Publishers ( pub_id, pub_name, city, state, country )
VALUES ( ? , ?, ?, ?, ?)

As you see, this command is straightforward: it just inserts a new record
and fills its fields with the arguments that will be passed to the InsertCommand
object. (The CommandBuilder object has conveniently created and initialized
the Parameters collection.)

The DELETE command is also relatively simple, but its WHERE clause has
to account for the fact that some fields (other than the primary key pub_id)
might be null when the record is read from the database, so you can’t simply
use the equality operator (which by default the T-SQL language would evaluate
to Null instead of True):

DELETE FROM Publishers
WHERE ( (pub_id = ?)
AND ((? IS NULL AND pub_name IS NULL) OR (pub_name = ?))
AND ((? IS NULL AND city IS NULL) OR (city = ?))
AND ((? IS NULL AND state IS NULL) OR (state = ?))
AND ((? IS NULL AND country IS NULL) OR (country = ?))

C21613753.fm  Page 1099  Monday, March 18, 2002  10:58 AM



1100 Part V Database Applications

The need to account for null values makes the syntax of the SQL com-
mand overly complex and forces the creation of duplicates in the Parameters
collection. In fact, the same argument value is inserted twice in the WHERE
clause, the first time to test whether it’s null and the second time to compare its
value with the current value stored in the database. Oddly, the Command-
Builder generates this sort of code for all database fields, including those that
aren’t nullable. When a field isn’t nullable, this precaution is unnecessary, but it
doesn’t have a noticeable impact on performance either.

The UPDATE command is the most complicated of the lot because its
WHERE clause uses the new values for all fields plus all the (repeated) original
values that are needed to locate the record that must be updated:

UPDATE Publishers
SET pub_id = ?, pub_name = ?, city = ?, state = ?, country = ?
WHERE ( (pub_id = ?)
AND ((? IS NULL AND pub_name IS NULL) OR (pub_name = ?))
AND ((? IS NULL AND city IS NULL) OR (city = ?))
AND ((? IS NULL AND state IS NULL) OR (state = ?))
AND ((? IS NULL AND country IS NULL) OR (country = ?))

The SQL commands that the CommandBuilder object produces depend
on the .NET data provider that you’re using. You see the difference when you
access the same database table using the native SQL Server .NET Data Provider:

INSERT INTO Publishers ( pub_id, pub_name, city, state, country )
VALUES ( @p1 , @p2, @p3, @p4, @p5)

DELETE FROM Publishers
WHERE ( (pub_id = @p1)
AND ((pub_name IS NULL AND @p2 IS NULL) OR (pub_name = @p3))
AND ((city IS NULL AND @p4 IS NULL) OR (city = @p5))
AND ((state IS NULL AND @p6 IS NULL) OR (state = @p7))
AND ((country IS NULL AND @p8 IS NULL) OR (country = @p9))

UPDATE Publishers
SET pub_id = @p1, pub_name = @p2, city = @p3, state= @p4, country = @p5
WHERE ( (pub_id = @p6)
AND ((pub_name IS NULL AND @p7 IS NULL) OR (pub_name = @p8))
AND ((city IS NULL AND @p9 IS NULL) OR (city = @p10))
AND ((state IS NULL AND @p11 IS NULL) OR (state = @p12))
AND ((country IS NULL AND @p13 IS NULL) OR (country = @p14))

Even if the actual SQL text is different, delete, insert, and update com-
mands work in the same way in both providers:

� The INSERT command adds a new record and uses the current value
of columns in the DataRow for its parameters. (Note that identity val-
ues are correctly omitted from the list because they’re generated by
the database.)

C21613753.fm  Page 1100  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1101

� The DELETE command locates the record that was originally read by
passing the original column values in the DataRow to the WHERE
clause, and deletes it.

� The UPDATE command locates the record that was originally read
(using the original column values in the WHERE clause) and updates
all fields with the current column values in the DataRow in the SET
clause.

You need to understand the difference between using original column val-
ues and current column values. You can determine which version of the col-
umn value is used by browsing the Parameters collection and checking the
SourceColumn and SourceVersion properties of each parameter:

‘ Display information about each parameter of the UpdateCommand command.
Dim par As SqlParameter
For Each par In da.UpdateCommand.Parameters

Debug.WriteLine(par.ParameterName & “ => “ & par.SourceColumn _
& “ (“ & par.SourceVersion.ToString & “)”)

Next

This is the output in the Debug window:

@p1 => pub_id (Current)
@p2 => pub_name (Current)
@p3 => city (Current)
@p4 => state (Current)
@p5 => country (Current)
@p6 => pub_id (Original)
@p7 => pub_name (Original)
@p8 => pub_name (Original)
@p9 => city (Original)
@p10 => city (Original)
@p11 => state (Original)
@p12 => state (Original)
@p13 => country (Original)
@p14 => country (Original)

Oddly, the SqlCommandBuilder object generates duplicates in the
Parameters collection that might be avoided by simply using the same parameter
name twice in the text for the DELETE and UPDATE commands. This behavior
doesn’t affect the result of the command but might introduce some overhead
when working with many fields. (Using duplicated parameters is necessary only
when you’re working with the OLE DB .NET Data Provider because it doesn’t
support named parameters.)

C21613753.fm  Page 1101  Monday, March 18, 2002  10:58 AM



1102 Part V Database Applications

Here are a few more details about the CommandBuilder object and some
of its limitations:

� The original SELECT command assigned to the DataAdapter (which
is also exposed by the SelectCommand property) can reference only
one table.

� The source table must include a primary key or at least a column
with a unique constraint, and the result returned by the SELECT
statement must include that column. Primary keys consisting of mul-
tiple columns are supported.

� The InsertCommand object inserts only the columns that are updat-
able and correctly omits identity, timestamp, and calculated columns
and in general all columns that are generated by the database engine.

� The UpdateCommand object uses the values of all the original col-
umns in the WHERE clauses, including the primary key, but correctly
omits timestamp and calculated columns from the SET clause.

� The DeleteCommand object uses the values of all the original col-
umns in the WHERE clause to locate the row that has to be deleted.

� The CommandBuilder generates invalid commands when the name
of a table or a column contains a space or a special character.

You can solve the last problem easily by forcing the CommandBuilder to
use a prefix and a suffix for all the table and column names used in the gener-
ated command. You can do this by assigning a string to the QuotePrefix and
QuoteSuffix properties so that the resulting SQL text conforms to the syntax
expected by the target database. For example, you must use this technique
when generating commands for Biblio’s Authors, Publishers, and Titles tables,
all of which contain one column with a space in its name:

Dim cn As New OleDbConnection(BiblioConnString)
Dim da As New OleDbDataAdapter(“SELECT * FROM Authors", cn)
‘ Create builder and enclose field names in square brackets.
Dim cmdBuilder As New OleDbCommandBuilder(da)
cmdBuilder.QuotePrefix = “["
cmdBuilder.QuoteSuffix = “]"
‘ Generate insert, delete, and update commands.
da.InsertCommand = cmdBuilder.GetInsertCommand
da.DeleteCommand = cmdBuilder.GetDeleteCommand
da.UpdateCommand = cmdBuilder.GetUpdateCommand

Here’s the text generated for the INSERT command:

INSERT INTO [Authors] ( [Author], [Year Born] ) VALUES (?, ?)

Keep in mind that the CommandBuilder executes the SQL command assigned to
the SelectCommand’s CommandText property to generate the other three com-

C21613753.fm  Page 1102  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1103

mands, so if you later change the SELECT command, the read and update com-
mands will be out of sync. For this reason, you should always invoke the
CommandBuilder’s RefreshSchema method any time you modify the SELECT
command.

Customizing Insert, Update, and Delete Commands
After you understand how the InsertCommand, UpdateCommand, and Delete-
Command properties work, it’s relatively easy to create your custom com-
mands. This technique requires that you write a lot more code than you have to
when using the CommandBuilder object, but it lets you generate faster and
more scalable code, both because you avoid one round-trip to the server and
because a well-written command can reduce the number of update conflicts. In
general, the InsertCommand object produced by the CommandBuilder is OK
for most purposes. So in the following discussion, I’ll focus only on the Update-
Command and DeleteCommand objects.

The DELETE command generated by the CommandBuilder uses the orig-
inal values of all the columns in its WHERE clause to locate the record that has
to be deleted. This approach is the safest one because it ensures that no record
is deleted if another user has changed one or more columns in the meantime.
In some applications, however, it might make sense to adopt a different strategy
for deletions and decide to delete the record even if another user has modified
any of its fields (other than the primary key). According to this strategy, the
most recent edit operation always wins and successfully updates the record
(unless another user has changed the primary key field). You can enforce this
strategy simply by using only the primary key field in the WHERE clause. This
technique is faster and more scalable, but you should ensure that it doesn’t
invalidate the business logic of your application.

For example, you might decide that it’s legal for a user to delete the record
of an employee who has left the company even though another user has mod-
ified the employee’s address in the meantime. You can enforce this strategy by
manufacturing the DeleteCommand yourself:

Dim cn As New OleDbConnection(BiblioConnString)
cn.Open()
Dim da As New OleDbDataAdapter(“SELECT * FROM Authors", cn)
da.FillSchema(ds, SchemaType.Source, “Authors”)
da.Fill(ds, “Authors”)

‘ Add here all insert/update/delete operations.
§

‘ Create a delete command that filters records by their Au_id field only.
Dim cmdDelete As New OleDbCommand(“DELETE FROM Authors WHERE Au_ID = ?", cn)
‘ Create an Integer parameter, and set its properties.

(continued)

C21613753.fm  Page 1103  Monday, March 18, 2002  10:58 AM



1104 Part V Database Applications

With cmdDelete.Parameters.Add(“@p1", GetType(Integer))
’ This is the name of the column in the DataTable.
.SourceColumn = “Au_id"
’ We want to use the original value in each DataRow.
.SourceVersion = DataRowVersion.Original

End With
‘ Assign command to the DeleteCommand property of the DataAdapter.
da.DeleteCommand = cmdDelete

You can enforce a similar strategy for the UpdateCommand object as well
by deciding that changes by the current user always overwrite changes by other
users who have modified the same record after the current user imported the
record into the DataSet:

‘ Create a custom update command.
Dim cmdUpdate As New OleDbCommand( _

 “UPDATE Authors SET Author = ?, [Year Born] = ? WHERE Au_ID = ?", cn)
‘ Add arguments for the SET clause. (They use current field values.)
With cmdUpdate.Parameters.Add(“@p1", GetType(String))

.SourceColumn = “Author"

.SourceVersion = DataRowVersion.Current
End With
With cmdUpdate.Parameters.Add(“@p2", GetType(Integer))

.SourceColumn = “Year Born"

.SourceVersion = DataRowVersion.Current
End With
‘ Add the argument in the WHERE clause. (It uses the original field value.)
With cmdUpdate.Parameters.Add(“@p3", GetType(Integer))

.SourceColumn = “Au_id"

.SourceVersion = DataRowVersion.Original
End With
‘ Assign the command to the DataAdapter’s UpdateCommand property.
da.UpdateCommand = cmdUpdate

You can often create DELETE and UPDATE commands better than those
generated by the CommandBuilder without making them less safe. For exam-
ple, the au_fname, au_lname, phone, and contract columns in the Pubs data-
base’s Authors table aren’t nullable, so you can update this table with a
command that’s simpler (and slightly faster) than the one generated by the
CommandBuilder object:

UPDATE Authors
SET au_id = @p1, au_fname = @p2, au_lname = @p3, phone = @p4,

address = @p5, city = @p6, state = @p7, zip = @p8, contract = @p9
WHERE ( (au_id = @p10)
AND (au_fname = @p11) AND (au_lname = @p12) AND (phone = @p13)
AND ((address IS NULL AND @p14 IS NULL) OR (address = @p14))
AND ((city IS NULL AND @p15 IS NULL) OR (city = @p15))

C21613753.fm  Page 1104  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1105

AND ((state IS NULL AND @p16 IS NULL) OR (state = @p16))
AND ((zip IS NULL AND @p17 IS NULL) OR (zip = @p17))
AND (contract = @p18)

Note that the preceding custom command correctly reuses the same
named parameter for the original value of nullable columns, unlike the SQL
statement produced by the CommandBuilder. This custom command works
correctly as long as the current value isn’t null, so your code must never use a
null value as a parameter.

The knowledge of how your application works often lets you simplify the
structure of the UPDATE command. For example, you might have an applica-
tion that displays all the columns in the records but prevents users from modi-
fying a few columns (typically, the primary key or other keys that might work
as foreign keys in other tables). As a result, you can omit such fields in the SET
clause of the UPDATE command.

If the database table contains a timestamp field, you have an opportunity
to improve the performance of both delete and update operations in a safe way
because in this case you can detect whether another user has modified the
record in question without verifying that all columns still contain their original
values. In fact, a timestamp field is guaranteed to change whenever a database
record is changed, so you can shrink the WHERE clause to include only the pri-
mary key (which serves to locate the record) and the timestamp field (which
serves to ensure that no user has modified the record after it was imported into
the DataSet). To see how this technique works in practice, extend the Authors
table in SQL Server’s Pubs database with a timestamp field named LastUpdate,
and then run this code:

‘ Connect to SQL Server’s Pubs using the OLE DB .NET Data Provider.
Dim cn As New OleDbConnection(OledbPubsConnString)
‘ Read a few fields, but ensure that you include the timestamp column.
Dim sql As String = “SELECT au_id,au_fname,au_lname,lastupdate FROM Authors"
Dim da As New OleDbDataAdapter(sql, cn)
da.Fill(ds, “Authors”)

‘ Create a custom delete command that uses the timestamp field.
Dim cmdDelete As New OleDbCommand( _

 “DELETE FROM Authors WHERE Au_ID = ? And LastUpdate=?", cn)
With cmdDelete.Parameters.Add(“@p1", GetType(Integer))

.SourceColumn = “Au_id"

.SourceVersion = DataRowVersion.Original
End With
‘ Timestamp values are saved as arrays of Byte.
With cmdDelete.Parameters.Add(“@p2", GetType(Byte()))

.SourceColumn = “LastUpdate"

(continued)

C21613753.fm  Page 1105  Monday, March 18, 2002  10:58 AM



1106 Part V Database Applications

.SourceVersion = DataRowVersion.Original
End With
da.DeleteCommand = cmdDelete

‘ Create a custom update that uses the timestamp column.
‘ (Note that primary key and timestamp columns don’t appear in the SET clause.)
Dim cmdUpdate As New OleDbCommand(“UPDATE Authors SET au_fname=?, “ _

& “au_lname=? WHERE au_id = ? AND LastUpdate=?", cn)
‘ Add the arguments for the SET clause. (They use the current field value.)
With cmdUpdate.Parameters.Add(“@p1", GetType(String))

.SourceColumn = “au_fname"

.SourceVersion = DataRowVersion.Current
End With
With cmdUpdate.Parameters.Add(“@p2", GetType(Integer))

.SourceColumn = “au_lname"

.SourceVersion = DataRowVersion.Current
End With
‘ Add the arguments in the WHERE clause. (They use the original field values.)
With cmdUpdate.Parameters.Add(“@p3", GetType(Integer))

.SourceColumn = “Au_id"

.SourceVersion = DataRowVersion.Original
End With
‘ Timestamp values are saved as arrays of Byte.
With cmdUpdate.Parameters.Add(“@p4", GetType(Byte()))

.SourceColumn = “LastUpdate"

.SourceVersion = DataRowVersion.Original
End With
da.UpdateCommand = cmdUpdate

Yet another reason for customizing the InsertCommand, UpdateCom-
mand, and DeleteCommand properties is to take advantage of any stored pro-
cedure in the database that has been specifically designed to insert, modify, and
delete records. By delegating these editing operations to a stored procedure
and preventing users and applications from directly accessing the database
tables, you can enforce greater control over data consistency. Inserting, updat-
ing, and deleting records through a stored procedure isn’t conceptually differ-
ent from what I have described so far. Please refer to the “Stored Procedures”
section in Chapter 20 to review how to create parameters for Command objects
that call stored procedures.

Changing the Order of Insert, Update, and Delete Operations
By default, all the rows in each table are processed according to their primary
key order. Most of the time, the order in which commands are sent to the data-
base doesn’t affect the outcome of the operation, but this isn’t always the case.
For example, suppose you change the primary key of a row from 10 to 20 and
then add a new row whose primary key is 10. Because this new row is pro-

C21613753.fm  Page 1106  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1107

cessed before the old one, the Update method will attempt to insert a record
with a primary key of 10 before the key of the existing database record is
changed. This attempt raises an error.

You can avoid this problem by sending all the delete operations first, then
all the update operations, and finally all the insert operations. This strategy is
possible because the Update method takes an array of DataRow objects as an
argument, so you can pass the result of a Select method whose third argument
is an appropriate DataViewRowState value:

Dim dt As DataTable = ds.Tables(“Authors”)
‘ First process deletes.
da.Update(dt.Select(Nothing, Nothing, DataViewRowState.Deleted))
‘ Next process updates.
da.Update(dt.Select(Nothing, Nothing, DataViewRowState.ModifiedCurrent))
‘ Finally process inserts.
da.Update(dt.Select(Nothing, Nothing, DataViewRowState.Added))

Another good time to send delete, update, and insert operations sepa-
rately is when you’re updating tables in a parent-child relationship. You must
insert a record in the parent table before adding the corresponding records in
the child table; however, you must delete a record in the parent table after
deleting the corresponding records in the child table. Here’s a piece of code
that takes these constraints into account:

‘ This code shows how to update the Publishers (parent) and
‘ Titles (child) tables correctly.

Dim cn As New OleDbConnection(BiblioConnString)
cn.Open()
‘ Fill both tables.
Dim daPub As New OleDbDataAdapter(“SELECT * FROM Publishers", cn)
Dim daTit As New OleDbDataAdapter(“SELECT * FROM Titles", cn)
daPub.Fill(ds, “Publishers”)
daTit.Fill(ds, “Titles”)

‘ Insert, update, and delete records in both tables.
§

‘ Send updates to both tables without any referential integrity error.
Dim dtPub As DataTable = ds.Tables(“Publishers”)
Dim dtTit As DataTable = ds.Tables(“Titles”)

‘ First process deleted rows in the child table.
daTit.Update(dtTit.Select(Nothing, Nothing, DataViewRowState.Deleted))
‘ Next process deleted rows in the parent table.

(continued)

C21613753.fm  Page 1107  Monday, March 18, 2002  10:58 AM



1108 Part V Database Applications

daPub.Update(dtPub.Select(Nothing, Nothing, DataViewRowState.Deleted))

‘ Next process inserted rows in the parent table and then in the child table.
daPub.Update(dtPub.Select(Nothing, Nothing, DataViewRowState.Added))
daTit.Update(dtTit.Select(Nothing, Nothing, DataViewRowState.Added))

‘ Finally process updates in the two tables.
daPub.Update(dtPub.Select(Nothing, Nothing, DataViewRowState.ModifiedCurrent))
daTit.Update(dtTit.Select(Nothing, Nothing, DataViewRowState.ModifiedCurrent))

Merging Changes in Another DataSet
The examples I’ve shown you so far were based on the assumption that the
code that modifies the DataSet is the same that updates the actual data source.
This holds true in most traditional client/server applications, but multitier sys-
tems can adopt a different pattern. For example, consider an application con-
sisting of a middle-tier component (for example, an XML Web service) that sits
between the database and the user interface layer (a Windows Forms program):

G21CN02In this arrangement, the XML Web service reads data from the database
using a DataAdapter object, manufactures a DataSet object, and sends it as XML
to the Windows Form client, which therefore gets a perfect copy of the DataSet
originally held in the XML Web service. The client code can now update, insert,
and delete one or more rows and can send the modified DataSet back to the
XML Web service, which can finally update the data source using the same
DataAdapter that was used to read data into the DataSet.

Most of the time, however, the client application doesn’t really need to
send back the entire DataSet because the middle-tier component needs to
know only which tables and which rows were changed after the DataSet was
sent to the client user interface layer. You can reduce the amount of data sent
over the wire by using the GetChanges method of the DataSet or the DataTable
object. This method returns another DataSet or DataTable object that contains
only the modified rows:

‘ Produce a DataSet with only the modified tables and rows.
Dim modDs As DataSet = ds.GetChanges()

When this new DataSet is sent to the XML Web service in the middle tier,
two things can happen:

5�	����*��"

���� ��
6�+ ����%������

��������

6�+5�� ��)���

���� ��

C21613753.fm  Page 1108  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1109

� The XML Web service rebuilds the DataAdapter object (or objects)
that was created to extract data from the database, initializes its
UpdateCommand, InsertCommand, and DeleteCommand properties
as you want, and applies the DataAdapter to the DataSet containing
only the modified rows. This behavior is the most scalable one, but
it can be adopted only when the changes coming from the client
don’t need any additional processing.

� The XML Web service merges the modified DataSet just received with
the original DataSet, processes the resulting DataSet as required, and
then invokes the DataAdapter’s Update method to update the data
source. This technique requires that the XML Web service save the
original DataSet somewhere while the client is processing the data.
Of course, you get the best performance if the original DataSet is
kept in memory, but this arrangement reduces the fault tolerance of
the entire system and raises affinity issues when you’re working with
a cluster of servers (because only one server can reply to a given cli-
ent’s request).

To merge the original DataSet with the modified DataSet received by the
user-interface layer, the XML Web service can use the Merge method:

‘ ds is the original DataSet.
‘ modDs is the modified DataSet received by the Windows Form client.
ds.Merge(modDs)

The Merge method can take two additional arguments: a Boolean that tells
whether current changes in the original DataSet should be maintained and a
MissingSchemaAction enumerated value that specifies what happens if the
schema of the two DataSet objects aren’t identical:

‘ Preserve changes in the original DataSet (ds), and
‘ add any new column found in the modified DataSet (modDs).
ds.Merge(modDs, True, MissingSchemaAction.Add)

Before merging data, the Merge method attempts to merge the schema of
the two DataSet objects, and it modifies the schema of the original DataSet with
any new column found in the DataSet being merged if the third argument is
MissingSchemaAction.Add.

While data is being merged, all constraints are disabled. If a constraint
can’t be reenforced at the end of the merge operation, a ConstraintException
object is thrown. In this case, the merged data is preserved, but the EnforceCon-
straints property is left as False. The middle-tier component should program-
matically resolve all conflicts before setting EnforceConstraints back to True and
performing the actual update on the data source.

C21613753.fm  Page 1109  Monday, March 18, 2002  10:58 AM



1110 Part V Database Applications

Resolving Update Conflicts
All the update samples you’ve seen so far were based on the simplistic assump-
tion that the current user was the only one updating the database and that no
other user was allowed to modify the records in the database after the applica-
tion had read data into the DataSet. At last, it’s time to see how you can resolve
the unavoidable conflicts that occur in all multiuser systems.

By default, if an Update command finds a conflict and can’t process a row,
it throws an exception, skipping all the remaining rows. This means that you
should always protect an Update command with a Try...End Try block:

Try
da.Update(ds, “Authors”)

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

In many cases, however, you want to try the update operation on all the
rows in the DataTable instead of stopping the operation at the first row that fails
to update. You can do this by simply setting the DataAdapter’s ContinueUp-
dateOnErrors property to True. In this case, you can test whether one or more
rows failed to update by checking the DataSet or DataTable’s HasChanges
property:

da.ContinueUpdateOnErrors = True
da.Update(ds, “Authors”)
If ds.HasChanges() Then

’ One or more rows failed to update.
End If

You can get a more granular control over what happens when an update
is attempted by trapping the RowUpdated event. This event lets you detect the
conflict and decide to continue the update operation with the remaining rows
if possible.

Handling the RowUpdated Event
When an Update command is issued, the DataAdapter object fires a pair of
events for each inserted, modified, or deleted row in the table being updated.
The RowUpdating event fires before sending the command to the database,
whereas the RowUpdated event fires immediately after the database has pro-
cessed the command. Table 21-10 describes the properties of the object passed
to the second argument of these events.

C21613753.fm  Page 1110  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1111

The key value is the RecordsAffected property, which returns the number
of records that were affected by the update command. Any value less than 1 in
this property means that the command failed and that we have an update con-
flict. This is the usual sequence of operations you perform inside a RowUpdated
event handler:

1. If the Status property is equal to Continue and the value of the
RecordsAffected property is 1, the update operation was successful.
In most cases, you have little else to do, and you can exit the event
handler.

2. If the Status property is equal to ErrorsOccurred, you can check the
Errors property to understand what went wrong. Frequent causes of
errors are violations of database constraints or referential integrity
rules, such as a duplicated value in a primary key or a unique column
or a foreign key that doesn’t point to any row in the parent table.

Table 21-10 Values Passed to the RowUpdating and RowUpdated Events

Event Property Description

RowUpdating and 
RowUpdated

StatementType An enumerated value that specifies the type of 
SQL command just executed. It can be SELECT, 
INSERT, UPDATE, or DELETE. (You’ll never see 
the SELECT value from inside these events, 
however.)

Command The ADO.NET Command object sent to the 
database.

Row The DataRow being updated.

TableMapping The DataTableMapping object used for the 
update operation.

Status An UpdateStatus enumerated value that speci-
fies how to handle the current row and the 
remaining rows. It can be Continue (continue 
the processing of rows), ErrorsOccurred (this 
update operation must be treated as an error), 
SkipCurrentRow (don’t update the current 
row), and SkipAllRemainingRows (don’t update 
the current row and all remaining rows).

RowUpdated only RecordsAffected Returns the number of records affected during 
the update.

Errors Returns the error generated by the .NET data 
provider during the update. (In spite of its 
name, this property returns a single Exception 
object.)

C21613753.fm  Page 1111  Monday, March 18, 2002  10:58 AM



1112 Part V Database Applications

3. If you get a System.Data.DBConcurrencyException exception, it
means that the WHERE clause in the SQL command failed to locate
the row in the data source. What you do next depends on your
application’s business logic. Typically, you test the StatementType
property to determine whether it was an insert, delete, or update
operation; in the latter two cases, the conflict is likely to be caused
by another user who has deleted or modified the record you’re trying
to delete or update.

4. You can issue a SELECT query against the database to determine
what columns caused the conflict, in an attempt to resynchronize the
DataSet with the data source and reconcile the conflicting row. For
example, if you have a conflict in an update operation (the most fre-
quent case), you can issue a SELECT command to read again the val-
ues now in the database table. If you have a conflict in a delete
operation, you can issue a SELECT command to check whether the
DELETE command failed because the record was deleted or because
another user changed one of the fields listed in your WHERE clause.

5. In all cases, you must decide whether the update operation should
continue. You can set the Status property to Continue or Skip-
CurrentRow to ignore the conflict for now, or SkipAllRemaining-
Rows to end the update operation without raising an error in the
application. You can also leave the value set to ErrorsOccurred, in
which case the Update method is terminated right away and an
exception is thrown to the main application.

You don’t have to perform all the preceding operations from inside a
RowUpdate event handler, however, and you don’t even need to write this event
handler in some cases. For example, you can postpone the resychronization step
until after the Update method has completed, and you might even decide not to
resynchronize at all. The sections that follow illustrate three possible resynchro-
nization strategies that you can adopt when dealing with update conflicts:

� You don’t reconcile at all and just display a warning to the user, men-
tioning which rows failed to be updated correctly. In this case, you
just set the ContinueUpdateOnErrors property to True and don’t
have to intercept the RowUpdated event.

� You reconcile with the data source after the Update method, using a
SELECT command that reads again all the rows that failed to update.
In this case, you place the resync code in the main application after
the Update method and set the ContinueUpdateOnErrors property to
True to avoid an exception when a conflicting row is found.

C21613753.fm  Page 1112  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1113

� You reconcile with the data source on a row-by-row basis for each
row that failed to update correctly. In this case, you place the resync
code right inside the RowUpdated event handler and set the Status
property of its argument to Continue. (Otherwise, the Update
method will fail when the first conflict is found.)

Displaying Conflicting Rows
In the first strategy for managing conflicts, you don’t even try to reconcile
them and limit your actions to just displaying the records that failed the
update operation. This strategy can be implemented quite simply, as this code
demonstrates:

‘ A class-level DataAdapter that has been correctly initialized
Dim da As OleDbDataAdapter

Sub UpdateRecords()
’ Ensure that conflicting rows don’t throw an exception.
da.ContinueUpdateOnErrors = True
’ Send changes to the database.
da.Update(ds, “Publishers”)

’ Exit if all rows were updated correctly.
If Not ds.HasChanges Then Exit Sub

’ If we get here, there’s at least one conflicting row.
Dim dt As DataTable = ds.Tables(“Publishers”)

’ Here’s a simple way to evaluate the number of conflicting rows.
Dim rowCount As Integer = dt.GetChanges().Rows.Count
Debug.WriteLine(rowCount & “ rows failed to update correctly”)

’ Mark all conflicting rows with the proper error message.
Dim dr As DataRow
For Each dr In dt.Rows

If dr.RowState = DataRowState.Added Then
dr.RowError = “Failed INSERT operation"

ElseIf dr.RowState = DataRowState.Modified Then
dr.RowError = “Failed UPDATE operation"

ElseIf dr.RowState = DataRowState.Deleted Then
dr.RowError = “Failed DELETE operation"
’ Undelete this record, else it wouldn’t show in the table.
dr.RejectChanges()

End If
Next

End Sub

This code works because the Update method automatically invokes
AcceptChanges on all the rows that were updated correctly without any conflict

C21613753.fm  Page 1113  Monday, March 18, 2002  10:58 AM



1114 Part V Database Applications

but leaves the conflicting rows in the state they were before the update. As a
result, you can use the DataSet’s HasChanges property to quickly determine
whether at least one row is still marked as modified, and then you can iterate
over all the rows in the DataTable to mark each row with a proper error mes-
sage, which shows up in the DataGrid control. (See Figure 21-7.) The only pre-
caution you have to take is to reject changes on deleted rows. Otherwise, these
deleted rows won’t be included in the DataTable object and won’t be displayed
in the DataGrid control.

F21CN07

Figure 21-7. Marking conflicting rows with an error message.

Resynchronizing After the Update Method
In most cases, you can (and should) try to understand why each update oper-
ation failed, instead of just showing the user the list of conflicting rows. You
typically do this by rereading rows from the data source and comparing the
values found in the database with those read when you filled the DataTable.
If you find different values, you’re likely to have found the cause of the con-
flict because the default WHERE clause in the DELETE and UPDATE com-
mands searches for a record that contains the original column values, as I
explain in “Understanding the CommandBuilder Object” earlier in this chap-
ter. (If you used custom update commands, you have to retouch the code in
this section.)

When synchronizing the DataTable with the data source, you might keep
things simple by reapplying the same DataAdapter to fill another DataTable
and then comparing this new DataTable with the original one. (Note that you
can’t fill the same DataTable again because you would reset the status of all
inserted and updated rows to Unchanged.) However, this simple technique
requires the transfer of a lot of rows from the server, even though only a small
fraction of such rows—that is, the conflicting ones—are actually needed for
your purposes.

C21613753.fm  Page 1114  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1115

A much better approach is to read only those rows that caused an update
conflict. You can do this by repeatedly calling a parameterized SELECT com-
mand or by manufacturing a single SELECT that returns all and only the rows in
question. In most cases, you should adopt the latter approach because of its
greater efficiency and scalability, even though it requires more code on your
part. The code I’m showing here isn’t exactly trivial, but it’s well commented
and has been designed with ease of reuse in mind:

Sub UpdateRecords()
’ Ensure that conflicting rows don’t throw an exception.
da.ContinueUpdateOnErrors = True
’ Send changes to the database.
da.Update(ds, “Publishers”)

If Not ds.HasChanges Then Exit Sub

’ Not all rows were updated successfully.
Dim dt As DataTable = ds.Tables(“Publishers”)

’ Keeping key column name in a variable helps make this code reusable.
Dim keyName As String = “pub_id"

’ Build the list of the key values for all these rows.
Dim values As New System.Text.StringBuilder(1000)
Dim keyValue As String
Dim dr As DataRow

For Each dr In dt.Rows
’ Consider only modified rows.
If dr.RowState <> DataRowState.Unchanged Then

’ The key to be used depends on the row state.
If dr.RowState = DataRowState.Added Then

’ Use the current key value for inserted rows.
keyValue = dr(keyName, DataRowVersion.Current).ToString

Else
’ Use the original key value for deleted and modified rows.
keyValue = dr(keyName, DataRowVersion.Original).ToString

End If
’ Append to the list of key values. (Assume it’s a string field.)
If values.Length > 0 Then values.Append(“,”)
values.Append(“‘“)
values.Append(keyValue)
values.Append(“‘“)

End If
Next

(continued)

C21613753.fm  Page 1115  Monday, March 18, 2002  10:58 AM



1116 Part V Database Applications

’ Create a new SELECT that reads only these records,
’ using the DataAdapter’s SELECT command as a template.
Dim sql2 As String = da.SelectCommand.CommandText
’ Delete the WHERE clause if there is one.
Dim k As Integer = sql2.ToUpper.IndexOf(“ WHERE “)
If k > 0 Then sql2 = sql2.Substring(0, k - 1)
’ Add the WHERE clause that contains the list of all key values.
sql2 &= “ WHERE “ & keyName & “ IN (“ & values.ToString & “)"

’ Read only the conflicting rows.
’ (Assume that cn holds a reference to a valid OleDbConnection object.)
Dim da2 As New OleDbDataAdapter(sql2, cn)
’ Fill a new DataTable. (It doesn’t have to belong to the DataSet.)
Dim dt2 As New DataTable()
da2.Fill(dt2)

The remainder of the UpdateRecords routine compares rows in the origi-
nal DataTable with those that have just been read from the data source and
marks both the conflicting rows and modified columns with a suitable error
message:

’ Loop on all the rows that failed to update.
Dim dr2 As DataRow
For Each dr In dt.Rows

If dr.RowState <> DataRowState.Unchanged Then
’ Mark the row with a proper error message,
’ and retrieve the key value to be used for searching in DT2.
If dr.RowState = DataRowState.Added Then

dr.RowError = “Failed INSERT command"
keyValue = dr(keyName, DataRowVersion.Current).ToString

ElseIf dr.RowState = DataRowState.Deleted Then
dr.RowError = “Failed DELETE command"
keyValue = dr(keyName, DataRowVersion.Original).ToString

ElseIf dr.RowState = DataRowState.Modified Then
dr.RowError = “Failed UPDATE command"
keyValue = dr(keyName, DataRowVersion.Original).ToString

End If

’ Find the matching row in the new table.
Dim rows() As DataRow
rows = dt2.Select(keyName & “=‘“ & keyValue & “‘“)

If (rows Is Nothing) OrElse rows.Length = 0 Then
’ We can’t find the conflicting row in the database.
dr.RowError &= “ - Unable to resync with data source"
’ Check whether the user changed the primary key.
If dr.RowState <> DataRowState.Added AndAlso _

dr(keyName, DataRowVersion.Current).ToString <> _
dr(keyName, DataRowVersion.Original).ToString Then

C21613753.fm  Page 1116  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1117

’ This is a probable source of the conflict.
dr.SetColumnError(keyName, “Modified primary key”)

End If

Else
’ We have found the conflicting row in the database, so
’ we can compare current values in each column.
dr2 = rows(0)

Dim i As Integer
For i = 0 To dr.Table.Columns.Count - 1

’ The type of comparison we do depends on the row state.
If dr.RowState = DataRowState.Added Then

’ For inserted rows, we compare the current value
’ with the database value.
If dr(i).ToString <> dr2(i).ToString Then

’ Show the value now in the database.
dr.SetColumnError(i, “Value in database = “ _

& dr2(i).ToString)
End If

Else
’ For deleted and modified rows, we compare the
’ original value with the database value.
If dr(i, DataRowVersion.Original).ToString <> _

dr2(i).ToString Then
Dim msg As String = “"
If dr(i, DataRowVersion.Original).ToString <> _

dr(i).ToString Then
msg = “Original value = “ & dr(i).ToString
msg &= “, “

End If
msg &= “Value in database = “ & dr2(i).ToString
dr.SetColumnError(i, msg)

End If
End If

Next
End If

End If

’ If a deleted row, reject changes to make it visible in the table.
If dr.RowState = DataRowState.Deleted Then

dr.RejectChanges()
End If

Next
End Sub

Figure 21-8 shows how row and column error messages are displayed in
a DataGrid control.

C21613753.fm  Page 1117  Monday, March 18, 2002  10:58 AM



1118 Part V Database Applications

F21CN08

Figure 21-8. Resynchronization with the data source lets you display
which columns caused the conflict.

Resolving Conflicts on a Row-by-Row Basis
Reconciling the DataTable on a row-by-row basis can be the most appropriate
strategy when the application’s business logic allows you to resolve conflicts
automatically, without asking the intervention of the user. In this scenario, you
reread each conflicting row from inside the RowUpdated event handler. When
this event fires, the connection is surely open, so you can execute the SELECT
command using a regular Command object.

Because you’re going to repeat the same query for all the conflicting rows,
it makes sense to build a parameterized command and reuse it from inside the
event handler. This task is common to many ADO.NET applications that update
the data source using the DataSet object, so I’ve prepared a reusable function
that takes a DataAdapter and a list of one or more key DataColumn objects and
returns a parameterized Command object. This Command object contains a
SELECT query that returns the only row with the given key:

‘ Create a Command that retrieves a single record from a table.
Function GetCurrentRowCommand(ByVal da As OleDbDataAdapter, _

ByVal ParamArray keyColumns() As DataColumn) As OleDbCommand
’ Get the SELECT statement in the DataAdapter.
Dim sql As String = da.SelectCommand.CommandText
’ Truncate the statement just before the WHERE clause if there is one.
Dim i As Integer = sql.ToUpper.IndexOf(“WHERE “)
If i > 0 Then sql = sql.Substring(0, i - 1)

’ Prepare the WHERE clause on all primary key fields.
Dim dc As DataColumn
Dim sb As New System.Text.StringBuilder(100)
For Each dc In keyColumns

If sb.Length > 0 Then sb.Append(“ AND “)

C21613753.fm  Page 1118  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1119

sb.Append(“[“)
sb.Append(dc.ColumnName)
sb.Append(“]=?”)

Next
sql &= “ WHERE “ & sb.ToString

’ Create the Command object on the same connection.
Dim cmd As New OleDbCommand(sql, da.SelectCommand.Connection)

’ Create the collection of parameters.
For Each dc In keyColumns

cmd.Parameters.Add(dc.ColumnName, dc.DataType)
Next
’ Return the command object.
Return cmd

End Function

Here’s a quick example that shows how to use the GetCurrentRowCom-
mand function:

Dim cn As New OleDbConnection(OledbPubsConnString)
Dim da As New OleDbDataAdapter( _

 “SELECT * FROM Publishers WHERE City=‘Seattle’", cn)
‘ You must pass the list of key columns after the first argument.
Dim resyncCmd As OleDbCommand = GetCurrentRowCommand(da, _

ds.Tables(“Publishers”).Columns(“pub_id”))
‘ Display the resulting command.
Debug.WriteLine(resyncCmd.CommandText)

’ => SELECT * FROM Publishers WHERE [pub_id]=?

The following code shows how to build a RowUpdated handler event that
attempts to resolve conflicts on a row-by-row basis, using the parameterized
Command object just initialized. The code that flags rows and columns with an
error message is similar to the one I showed you in the preceding section, so I
won’t comment on it again.

The key point in this routine is when the code checks whether an update
operation failed because the current user has changed one or more fields by
assigning exactly the same value as another user. For example, say that a pub-
lisher moves to another city and that two operators attempt to enter new values
in the City, State, and possibly Country fields. The first operator updates the
record successfully, but the second one receives a conflict error because the
UPDATE command can’t locate the original row in the database. In such cir-
cumstances, you might argue that this error isn’t a real update conflict because,
after all, the row in the database contains exactly the values that the second
operator meant to enter. The following code correctly detects this case and

C21613753.fm  Page 1119  Monday, March 18, 2002  10:58 AM



1120 Part V Database Applications

manually performs an AcceptChanges method on the row in question, effec-
tively clearing any update conflict. (Related statements are in boldface.)

‘ The code in this event handler uses the resyncCmd object
‘ initialized in the preceding code snippet.

Sub OnRowUpdated(ByVal sender As Object, _
ByVal args As OleDbRowUpdatedEventArgs)
If args.Status <> UpdateStatus.ErrorsOccurred Then

’ Update was OK.
ElseIf Not TypeOf args.Errors Is DBConcurrencyException Then

’ An error occurred (maybe an RI violation).
args.Row.RowError = “ERROR: “ & args.Errors.Message
’ Continue the update operation.
args.Status = UpdateStatus.Continue

Else
’ An update conflict occurred.
Dim dr As DataRow = args.Row
Dim keyValue As String
Dim keyName As String = “pub_id"

Select Case args.StatementType
Case StatementType.Insert

dr.RowError = “Conflict on an INSERT operation"
keyValue = dr(keyName, DataRowVersion.Current).ToString

Case StatementType.Delete
dr.RowError = “Conflict on a DELETE operation"
keyValue = dr(keyName, DataRowVersion.Original).ToString

Case StatementType.Update
dr.RowError = “Conflict on an UPDATE operation"
keyValue = dr(keyName, DataRowVersion.Original).ToString

End Select

’ Read the current row. Use the original key value in WHERE clause.
’ (Otherwise, you get an error if the row has been deleted.)
resyncCmd.Parameters(keyName).Value = keyValue
Dim dre As OleDbDataReader = _

resyncCmd.ExecuteReader(CommandBehavior.SingleRow)
’ Advance to first record, and remember whether there’s a record.
Dim recordFound As Boolean = dre.Read

If recordFound And args.StatementType = StatementType.Insert Then
’ We attempted an insert on a record that’s already there.
dr.RowError &= “- There is a record with key = “ & keyValue

ElseIf Not recordFound AndAlso _
args.StatementType <> StatementType.Insert Then
’ We tried to update/delete a record that isn’t there any longer.
dr.RowError &= “Can’t find a record with key = “ & keyValue

Else

C21613753.fm  Page 1120  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1121

’ The operation failed for some other reason.

’ After the loop, this variable is 0 only if the current value
’ and the database value are the same for all conflicting columns.
Dim nonMatchingColumns As Integer = 0

Dim i As Integer
For i = 0 To dre.FieldCount - 1

Dim dbValue, origValue, currValue As Object
’ Get value in database if there is a matching record.
If recordFound Then

dbValue = dre(i)
End If
’ Get original value if not an Insert operation.
If args.StatementType <> StatementType.Insert Then

origValue = args.Row(i, DataRowVersion.Original)
End If
’ Get the current value if not a Delete operation.
If args.StatementType <> StatementType.Delete Then

currValue = args.Row(i, DataRowVersion.Current)
End If

’ Decide whether this field might be a source for a conflict.
Dim conflicting As Boolean = False
If Not recordFound Then

’ If couldn’t find the record, any modified column can be
’ considered as a potential cause for conflict.
If Not (origValue Is Nothing) AndAlso _

Not (currValue Is Nothing) AndAlso _
(origValue.ToString <> currValue.ToString) Then
conflicting = True

End If
Else

’ If the record was found, but original and database value
’ differ, we’ve found a cause for the conflict.
If Not (origValue Is Nothing) AndAlso _

(dbValue.ToString <> origValue.ToString) Then
conflicting = True
If Not (currValue Is Nothing) AndAlso _
(dbValue.ToString <> currValue.ToString) Then

’ We’ve found a column for which the database and
’ current values don’t match.
nonMatchingColumns += 1

End If
End If

End If

(continued)

C21613753.fm  Page 1121  Monday, March 18, 2002  10:58 AM



1122 Part V Database Applications

If conflicting Then
’ Display field name and all related values.
Dim msg As String = “"
If Not (origValue Is Nothing) Then

msg = “Original value = “ & origValue.ToString & “,"
End If
If Not (dbValue Is Nothing) Then

msg &= “Value in database =“ & dbValue.ToString
End If
dr.SetColumnError(i, msg)

End If
Next

’ If we’ve found a record in the database and all values in the
’ database match the current values, it means that we can consider
’ this record successfully updated because another user had
’ inserted exactly the same values this user wanted to change.
If recordFound And nonMatchingColumns = 0 Then

dr.AcceptChanges()
dr.ClearErrors()

End If
End If

’ Close the DataReader.
dre.Close()
’ In all cases, swallow the exception and continue.
args.Status = UpdateStatus.Continue

End If
End Sub

Another type of conflict that can be resolved automatically occurs when
two operators insert the same record, with the same values in all fields. In this
case, the second operator receives an OleDbException or a SqlException error,
whose exact message depends on the database server. With SQL Server, you get
an error message like this:

Violation of PRIMARY KEY constraint ’UPKCL_pubind’.
Cannot insert duplicate key in object ’publisher’.

The code in the RowUpdated event might intercept this error, compare the val-
ues in the current row with the values in the database table, and cancel the con-
flict if they match perfectly. The code that reads the database table and
compares all fields is similar to the code in the preceding snippet, so I leave this
task to you as an exercise.

Rolling Back Multiple Updates
As you know, the Update method sends an individual INSERT, DELETE, or
UPDATE command to the data source for each modified row in the DataTable.

C21613753.fm  Page 1122  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1123

However, an exception is thrown and no more commands are sent if there is an
update conflict and you neither set the ContinueUpdateOnErrors property to
True nor set the Status property to Continue inside the RowUpdated event. If an
exception is thrown, you must be prepared to catch it in a Try…End Try block.

However, it should be made clear that when the exception is thrown and
the Update method returns the execution flow to the main code, some rows
might have been already updated in the database. In the majority of cases, this
effect is undesirable because usually you want to update either all the rows (at
least those that don’t cause any conflict) or no row at all. For example, if you
get an exception after inserting an Order record but before adding the first
OrderDetail row, you’ll end up with a database in an inconsistent state.

In the preceding sections, I’ve shown how you can continue to perform
updates when a conflict arises, so what’s left to learn is how to use transactions
to completely roll back any update operation on the database before the first
conflict occurred. Protecting your application from partial updates is actually
simple: you just have to open a transaction on the connection and commit it if
the Update method completes successfully, or roll it back if an exception is
thrown. To do so, you must explicitly assign the Transaction object to all the
Command objects in the DataAdapter’s UpdateCommand, InsertCommand, and
DeleteCommand properties. Here’s an example of this technique:

‘ Run the Update method inside a transaction.
Dim tr As OleDbTransaction
‘ Comment next line to see how updates behave without a transaction.
tr = cn.BeginTransaction()

‘ Enroll all the DataAdapter’s commands in the same transaction.
da.UpdateCommand.Transaction = tr
da.DeleteCommand.Transaction = tr
da.InsertCommand.Transaction = tr

‘ Send changes to the database.
Try

da.Update(ds, “Publishers”)
Catch ex As Exception

’ Roll back the transaction if there is one.
If Not (tr Is Nothing) Then

tr.Rollback()
tr = Nothing
’ Let the user know that there was a problem.
MessageBox.Show(ex.Message, “Update error", MessageBoxButtons.OK, _

MessageBoxIcon.Error)
End If

Finally

(continued)

C21613753.fm  Page 1123  Monday, March 18, 2002  10:58 AM



1124 Part V Database Applications

’ Commit the transaction if there is one.
If Not (tr Is Nothing) Then

tr.Commit()
tr = Nothing

End If
End Try

‘ Close the connection.
cn.Close()

Transactions can be useful even if you protect your code from exceptions
by setting the ContinueUpdateOnErrors property to True or by setting the Status
property to Continue from inside the RowUpdated event. For example, you
might show the user all the conflicts that you have detected and possibly
resolved via code and then ask for his or her approval to commit all changes or
roll them back as a whole.

Advanced Techniques
What I’ve described so far covers the fundamentals of update operations in a
disconnected fashion, but there’s much more to know. In fact, I dare say that
each application poses its special challenges, and it’s up to you to find the best
solution in each specific circumstance. Fortunately, the more I work with
ADO.NET the more I realize that it’s far more flexible than I suspected at first.
In this section, I’ve gathered a few sophisticated techniques that can improve
your application’s performance and scalability even further.

Reducing Conflicts with the RowUpdating Event
The RowUpdating event fires before the DataAdapter sends an insert, update,
or delete command to the data source. The RowUpdating event isn’t as impor-
tant as the RowUpdated event because you can’t fix a conflict before the con-
flict has occurred. Nevertheless, this event gives you something that the
RowUpdated event doesn’t give you: the ability to change the command being
sent to the database, which in some scenarios is important.

For example, say that two users are modifying different columns of the
same employee record at the same time: one user is changing the employee’s
address, city, and state values, while another user is changing the employee’s
salary. By default, the second user receives a conflict notification when she
attempts to save the new salary value, but you can also decide that this oper-
ation is valid for your application’s logic. If you decide that it’s OK for two
users to modify different fields, the second user shouldn’t experience any
update conflict.

C21613753.fm  Page 1124  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1125

To achieve this result, you must build an UPDATE command whose
WHERE clause contains only the primary key and the fields that have been
modified (as opposed to all the fields in the row). You can’t solve this problem
with a custom command in the DataAdapter’s UpdateCommand property
because each row might have been modified in different ways. So your only
choice is to create a new Command on the fly from inside the RowUpdating
event handler.

As you can see in Table 21-10, both the RowUpdating and RowUpdated
events can access the command being sent to the data source through the argu-
ment’s Command property. However, when you’re inside a RowUpdating
event, you can even assign a new Command object to this property, which
effectively allows you to plug your custom update commands into the Data-
Adapter’s row-by-row update mechanism. Moreover, you can access the
DataRow being updated, so it’s relatively easy to create an UPDATE command
that uses only the modified fields in the SET and WHERE clauses. (The latter
clause must always include the primary key—otherwise, the command might
affect multiple rows.)

The following code is a sample RowUpdating event handler that imple-
ments this technique. It creates a parameterized command instead of a plain
SQL command that contains constant values so that it doesn’t have to account
for setting field delimiters, doubling embedded quotes, and the like. If nothing
else, this example should convince you that ADO.NET gives you incredible
flexibility, even if it doesn’t give it for free:

‘ A DataAdapter object that has been correctly initialized.
Dim WithEvents da As OleDbDataAdapter

Sub OnRowUpdating(ByVal sender As Object, _
ByVal args As OleDbRowUpdatingEventArgs) Handles da.RowUpdating
’ Exit if this isn’t an Update operation.
If args.StatementType <> StatementType.Update Then Exit Sub

Dim keyName As String = “pub_id"
Dim dr As DataRow = args.Row

Dim i As Integer
Dim numColumns As Integer = dr.Table.Columns.Count
Dim setText As String = “"
Dim whereText As String = “"
Dim setParams As New ArrayList()
Dim whereParams As New ArrayList()
Dim param As OleDbParameter

(continued)

C21613753.fm  Page 1125  Monday, March 18, 2002  10:58 AM



1126 Part V Database Applications

For i = 0 To dr.Table.Columns.Count - 1
Dim dc As DataColumn = dr.Table.Columns(i)
Dim colName As String = dc.ColumnName

’ Check whether this column must be added to the SET part.
If dr(i).ToString <> dr(i, DataRowVersion.Original).ToString Then

’ Add this column to the SET text.
If setText.Length > 0 Then setText &= “,"
setText &= “[“ & colName & “]=?"
’ Add a parameter in the corresponding position of the SET list.
param = New OleDbParameter(colName, dc.DataType)
param.SourceVersion = DataRowVersion.Current
param.Value = dr(i)
setParams.Add(param)

End If

’ Check whether this column must be added to the WHERE part.
’ (Primary keys are always added to the WHERE part.)
If colName = keyName Or dr(i).ToString <> _

dr(i, DataRowVersion.Original).ToString Then
If whereText.Length > 0 Then whereText &= “ AND “
whereText &= “[“ & colName & “]=?"
’ Add a parameter in the corresponding position of the WHERE list.
param = New OleDbParameter(colName, dc.DataType)
param.SourceVersion = DataRowVersion.Original
param.Value = dr(i, DataRowVersion.Original)
whereParams.Add(param)

End If
Next

’ Assemble the SQL string.
Dim sql As String = “UPDATE “ & dr.Table.TableName & “ SET “ _

& setText & “ WHERE “ & whereText
’ Create a command on the same connection as the original command.
Dim cmd As New OleDbCommand(sql, args.Command.Connection)
’ Enroll the new command in the same transaction as well.
cmd.Transaction = args.Command.Transaction

’ Assemble the collection of parameters.
’ (SET parameters first; then WHERE parameters.)
For Each param In setParams

cmd.Parameters.Add(param)
Next
For Each param In whereParams

cmd.Parameters.Add(param)
Next

C21613753.fm  Page 1126  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1127

’ Assign the command to the DataAdapter command.
args.Command = cmd

End Sub

Improving Performance with JOIN Queries
All the examples we’ve seen so far were based on rather simple queries. Possi-
bly they retrieved all the records in a database table or perhaps they attempted
to reduce the network traffic and database activity by selecting a subset of rows
with a WHERE clause or a subset of columns, as in these two examples:

-- Only the titles published on or after 10/1/1992.
SELECT title_id, title, pub_id, pubdate FROM Titles WHERE pubdate>‘10/1/1992’
-- Only the publishers from the U.S.A.
SELECT pub_id, pub_name, city FROM Publishers WHERE country=‘USA’

Alas, in the real world very few queries are that simple, as all database
programmers know. For example, consider a query that must return all (and
only) the titles published after October 1, 1991, from all (and only) the publish-
ers based in the United States. No problem, you might say: just fill two Data-
Table objects using the preceding two SELECT queries, and then create a
relationship between them. Well, this can work with tables with a few hundred
rows, but you aren’t going to use this naive technique with tables of 100,000
rows, are you? The point is, you would read a lot of records that you don’t
really want—such as titles published by publishers not in the United States and
U.S. publishers who haven’t published any books since October 1991.

Obviously, you must filter rows before the resultset leaves the server if
you want to reduce both network traffic and the load on the database engine.
The ideal solution would be to issue a JOIN command like this:

-- QUERY A: Retrieve data on titles and publishers satisfying
-- the query criteria in one resultset, sorted by Publishers.
SELECT pub_name, city, Publishers.pub_id, title_id, title, pubdate

FROM Publishers INNER JOIN Titles ON Publishers.pub_id = Titles.pub_id
WHERE country = ’USA’ AND pubdate > ’10/1/1991’
ORDER BY Publishers.pub_id

In fact, this is the statement that you would have used in the good old
ADO days. Unfortunately, the DataSet update model requires a one-to-one
mapping between DataTable objects on the client and a database table on the
server. For example, the CommandBuilder can work only if the DataAdapter’s
SELECT command references only one table.

C21613753.fm  Page 1127  Monday, March 18, 2002  10:58 AM



1128 Part V Database Applications

Even if you can’t use a single JOIN like the preceding one, certainly you
can use two JOIN commands to fill the two DataTable objects without reading
more rows than strictly necessary:

-- QUERY B: Only the titles published in or after Oct 1991 by a U.S. publisher
SELECT Titles.pub_id, title_id, title, pubdate FROM Titles

INNER JOIN Publishers ON Publishers.pub_id = Titles.pub_id
WHERE country = ’USA’ AND pubdate > ’10/1/1991’

-- QUERY C: Only the publishers from the USA that published a book since 1992
-- (The GROUP BY clause is necessary to drop duplicate rows.)
SELECT pub_name, city, Publishers.pub_id FROM Publishers

INNER JOIN Titles ON Publishers.pub_id = Titles.pub_id
WHERE country=‘USA’ AND pubdate > ’10/1/1991’
GROUP BY Publishers.pub_id, pub_name, city

This solution is much better than the first one, but it still suffers from a
couple of problems that negatively affect the resulting scalability. First, you’re
asking the database engine to perform basically the same filtering operation
twice—in fact, the two WHERE clauses are identical—so you can expect that
these two JOINs take longer than the single JOIN seen before (even though not
twice as long). The second problem is subtler: to be absolutely certain that the
two returned resultsets are consistent with each other, you must run the two
SELECT queries inside a transaction with the level set to Serializable, thus hold-
ing a lock on both tables until you complete the read operation and commit the
transaction.

To see why you need to wrap these commands in a transaction, imagine
what would happen if another user deleted a publisher immediately after your
first SELECT query and before your second SELECT query. The modified pub-
lisher wouldn’t be returned by your second SELECT, and a row in the Titles
DataTable would point to a parent row that didn’t exist in the Publishers Data-
Table. This condition would raise an error when you attempted to establish a
relationship between these two DataTable objects, and you’d have a title in
your DataSet for which you couldn’t retrieve the corresponding publisher.
Reversing the order of the two queries wouldn’t help much because you’d get
a similar error if a title from a U.S. publisher were added to the database after
the SELECT on the Publishers table and before the query on the Titles table.
Again, the only way to avoid this consistency problem is to run the two SELECT
queries inside a serializable transaction, which degrades overall scalability.

Now that the problem is clear, let’s see whether we can find a better solu-
tion. Have a look at Figure 21-9. At the top, it shows the result of the JOIN state-
ment that returns fields from both tables (labeled as query A in previous code
snippets); at the bottom, you see the results from the two JOINs that return
fields from a single table (queries B and C). Now it’s apparent that you can

C21613753.fm  Page 1128  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1129

duplicate the effect of query C by dropping a few columns from the result of
query A, which you can do simply by invoking the Remove or RemoveAt
method of the Columns collection.

F21CN09

Figure 21-9. Splitting the result of a JOIN into two DataTable objects.

Deriving the results of query B from query A is slightly more difficult
because you must loop through all the rows in a large resultset to filter out
duplicate values. However, the GROUP BY clause in query A ensures that the
same values are consecutive, so it’s easy to filter out all rows with duplicate val-
ues in the primary key column. The following code shows how to perform the
splitting in an optimized way:

‘ Define all the involved SQL commands.
‘ NOTE: the code below assumes that the first column in the child
‘ table is its foreign key.
Dim titSql As String = “SELECT pub_id, title_id, title, pubdate FROM Titles"
Dim pubSql As String = “SELECT pub_id, pub_name, city FROM Publishers"
Dim joinSql As String = “SELECT Publishers.pub_id, pub_name, city, “ _

& “title_id, title, pubdate FROM Publishers “ _
& “INNER JOIN Titles ON Publishers.pub_id=Titles.pub_id “ _
& “WHERE country = ’USA’ AND pubdate > ’10/1/1991’” _
& “ORDER BY Publishers.pub_id"

‘ Create the connection and all the involved DataAdapter objects.
Dim cn As New SqlConnection(SqlPubsConnString)
Dim titDa As New SqlDataAdapter(titSql, cn)
Dim pubDa As New SqlDataAdapter(pubSql, cn)
Dim joinDa As New SqlDataAdapter(joinSql, cn)

'�!(�������7����%�

������#����7����-�

&������7����
�

(continued)

C21613753.fm  Page 1129  Monday, March 18, 2002  10:58 AM



1130 Part V Database Applications

‘ Open the connection.
cn.Open()

‘ Manually create the parent and child tables in the DataSet.
Dim ds As New DataSet
Dim pubDt As DataTable = ds.Tables.Add(“Publishers”)
Dim titDt As DataTable = ds.Tables.Add(“Titles”)

‘ Fill the schema of the master table.
pubDa.FillSchema(pubDt, SchemaType.Mapped)

‘ Execute the JOIN, using the child DataTable as a target.
‘ (It creates additional columns that belong to the parent table.)
joinDa.Fill(titDt)

‘ This variable holds the last value found in the master table.
Dim keyValue As String
Dim i As Integer
Dim dr As DataRow

‘ Extract rows belonging to the parent table, and discard duplicate values.
For Each dr In titDt.Rows

’ If we haven’t seen this value yet, create a record in the parent table.
If dr(0).ToString <> keyValue Then

’ Remember the new key value.
keyValue = dr(0).ToString
’ Add a new record.
Dim pubRow As DataRow = pubDt.NewRow
’ Copy only the fields belonging to the parent table.
For i = 0 To pubDt.Columns.Count - 1

pubRow(i) = dr(i)
Next
pubDt.Rows.Add(pubRow)

End If
Next

‘ Remove columns belonging to the master table,
‘ but leave the foreign key (assumed to be in the zeroth column).
For i = pubDt.Columns.Count - 1 To 1 Step -1

titDt.Columns.RemoveAt(i)
Next

‘ Now we can fill the schema of the child table and close the connection.
titDa.FillSchema(titDt, SchemaType.Mapped)
cn.Close()

‘ Add the relationship manually. Note that this statement is based on the
‘ assumption that the foreign key is in the zeroth column in the child table.

C21613753.fm  Page 1130  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1131

ds.Relations.Add(“PubTitles", pubDt.Columns(0), titDt.Columns(0))

‘ Bind to the DataGrid controls.
DataGrid1.DataSource = pubDt
DataGrid2.DataSource = titDt

Figure 21-10 shows the result of the preceding code. This solution solves
all the problems mentioned previously because SQL Server evaluates only one
statement and you don’t have to use a transaction to ensure consistent results.
(Individual statements run inside an implicit transaction.) The only minor defect
of this technique is that it retrieves some duplicated data for the parent table
(the rows that you discard in the For Each loop in the previous code), which
causes slightly more network traffic. If you’re retrieving many columns from the
parent table and each parent row has many child records, this extra traffic
becomes noticeable, and you might find it preferable to fall back on the solu-
tion based on the two JOIN statements running inside a transaction. Only a
benchmark based on the actual tables and the actual network configuration can
tell which technique is more efficient or scalable.

F21CN10

Figure 21-10. The two DataGrid controls contain only the data 
really needed.

A final note: the preceding code defines two DataAdapter objects, one for
each table, and uses them only to retrieve the database table’s schema. Even if
the DataTable objects weren’t filled using these DataAdapters, you could still
pass them to a CommandBuilder object to generate the usual INSERT, DELETE,
and UPDATE statements that you then use to update either table.

Paginating Results
Even though a DataTable object can contain up to slightly more than 16 million
rows, you shouldn’t even try loading more than a few hundred rows in it, for

C21613753.fm  Page 1131  Monday, March 18, 2002  10:58 AM



1132 Part V Database Applications

two good reasons. First, you’d move just too much information through the
wire; second, the user won’t browse all those rows anyway. So you should
attempt to reduce the number of records read—for example, by refining the
WHERE clause of your query. If this remedy isn’t possible, you should offer a
pagination mechanism that displays results only one page at a time, without
reading more rows than strictly needed each time.

Implementing a good paging mechanism isn’t trivial. For example, you
can easily implement a mediocre paging mechanism by passing a starting
record and a number of records as arguments to the DataAdapter’s Fill method,
as in this code snippet:

‘ Read page N into Publishers table. (Each page contains 10 rows.)
da.Fill(ds, (n – 1) * 10, 10, “Publishers”)

(I explained this syntax in the “Filling a DataTable” section earlier in this chap-
ter.) What actually happens is that the DataAdapter reads all the records before
the ones you’re really interested in, and then it discards them. So this approach
is OK for small resultsets, but you should never use it for tables containing
more than a few hundred rows. You have to roll up your sleeves and start writ-
ing some smart SQL code to implement a better paging mechanism.

Let’s start by having a look at the following graph, which depicts a small
Publishers table of just 12 records, divided into three pages of four rows each.
The resultset is sorted on the PubId numeric key.

G21CN03

���!�

������#��������

����.

����/

����0

.

0

8

./

.9

/:

00

2.

33

82

8:

:.

C21613753.fm  Page 1132  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1133

Getting the first page is easy, thanks to the TOP clause offered by both
Access’s SQL and T-SQL dialects:

SELECT TOP 4 * FROM Publishers ORDER BY PubId

Moving to the next page is also simple. Say that you’re currently posi-
tioned on a page in the middle of the table, such as the one that appears in gray
in the preceding diagram, and you want to read the next four rows. These rows
are the first four records whose key value is higher than the value of the key at
the last record in the current page:

-- 51 is the value of the key at the last row in the current page.
SELECT TOP 4 * FROM Publishers WHERE Pubs > 51 ORDER BY PubId

Getting the last page is also simple: we just need to retrieve rows in
reverse order and select the first four rows of the result. To keep things simple,
let’s assume that the resultset contains an integer multiple of the page size:

SELECT TOP 4 * FROM Publishers ORDER BY PubId DESC

The problem here is that we get the result in reverse order and therefore
must reverse the rows. We might do this after we load the rows into the Data-
Table, but it’s better to have the database engine do the job for us so that we
can bind the resultset directly to a DataGrid control. So we need to run the pre-
ceding query as a subquery of another SELECT command that puts all rows in
the correct order:

SELECT * FROM Publishers WHERE PubId IN
(SELECT TOP 4 PubId FROM Publishers ORDER BY PubId DESC)
ORDER BY PubId

Implementing the Previous button is slightly more complex because we
want the four records that come immediately before the key value in the first
row of the current page, as in this code snippet:

-- 19 is the value of the key at the first row in the current page.
SELECT TOP 4 * FROM Publishers WHERE PubId < 19 ORDER BY PubId DESC

Again, this query returns a resultset whose rows are in reverse order, so
we need to run the query as a subquery of another SELECT that puts everything
right again:

SELECT * FROM Publishers WHERE PubId IN
(SELECT TOP 4 PubId FROM Publishers WHERE PubId < 19 ORDER BY PubId DESC)
ORDER BY ISBN

We’re now able to implement the First, Previous, Next, and Last buttons in
our Windows Form or Web Form. We can also add a Goto button that displays

C21613753.fm  Page 1133  Monday, March 18, 2002  10:58 AM



1134 Part V Database Applications

the Nth page. For example, showing the fifth page would mean reading the first
20 rows and extracting the last 4 rows of the result:

SELECT TOP 4 * FROM Publishers WHERE PubId IN
(SELECT TOP 20 PubId FROM Publishers ORDER BY PubId)
ORDER BY PubId DESC

This query returns the rows in reverse order, so we must run it as a sub-
query of another query that re-sorts the result in the correct order:

SELECT * FROM Publishers WHERE PubId IN
(SELECT TOP 4 PubId FROM Publishers WHERE PubId IN

(SELECT TOP 20 PubId FROM Publishers ORDER BY PubId)
ORDER BY PubId DESC)

ORDER BY PubId

I told you that implementing paging isn’t a trivial task, remember? Any-
way, at this point creating the application has become just a matter of running
the right queries against the database. Here’s an abridged version of the demo
program you’ll find on the companion CD. (See Figure 21-11.)

Dim cn As New OleDbConnection(BiblioConnString)
Dim cmd As New OleDbCommand(sql, cn)
Dim da As OleDbDataAdapter

‘ You can change the page size as you prefer.
Dim pageSize As Integer = 10
‘ This is the number of records.
Dim recCount As Integer
‘ This is the number of pages.
Dim pageCount As Integer
‘ This is the current page number.
Dim currPage As Integer

Dim ds As New DataSet()
Dim dt As DataTable = ds.Tables.Add(“Titles”)
Dim sql As String

Private Sub PagingForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
’ Evaluate number of pages.
GetPageNumber()
’ Bind the Titles table.
DataGrid1.DataSource = dt
’ Show the first page of results.
btnFirst.PerformClick()

End Sub

C21613753.fm  Page 1134  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1135

‘ Evaluate number of pages in the results.
Sub GetPageNumber()

Dim closeOnExit As Boolean
’ Open the connection if necessary.
If cn.State = ConnectionState.Closed Then

cn.Open()
closeOnExit = True

End If

’ Evaluate number of records.
cmd.CommandText = “SELECT COUNT(*) FROM Titles"
recCount = CInt(cmd.ExecuteScalar())
’ Close the connection if it was closed.
If closeOnExit Then cn.Close()

’ Evaluate number of pages, and display the count.
pageCount = (recCount + pageSize - 1) \ pageSize
lblRecords.Text = “ of “ & pageCount.ToString

End Sub

‘ Run the specified query, and display the Nth page of results.
Sub DisplayPage(ByVal n As Integer, ByVal sql As String)

’ Perform the query, and display the results.
cn.Open
Dim da As New OleDbDataAdapter(sql, cn)
dt.Clear()
da.Fill(dt)
’ Uncomment next statement to update page count each time
’ a new page is displayed.
’ GetPageNumber()
cn.Close

’ Remember current page number, and display it.
currPage = n
lblCurrPage.Text = n.ToString

’ Enable or disable buttons.
btnFirst.Enabled = (n > 1)
btnPrevious.Enabled = (n > 1)
btnNext.Enabled = (n < pageCount)
btnLast.Enabled = (n < pageCount)

End Sub

‘ Manage the four navigational buttons.

(continued)

C21613753.fm  Page 1135  Monday, March 18, 2002  10:58 AM



1136 Part V Database Applications

Private Sub btnFirst_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnFirst.Click
sql = String.Format(“SELECT TOP {0} * FROM Titles ORDER BY ISBN", _

pageSize)
DisplayPage(1, sql)

End Sub

Private Sub btnPrevious_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrevious.Click
sql = String.Format(“SELECT * FROM Titles WHERE ISBN IN “ _

& “(SELECT TOP {0} ISBN FROM Titles WHERE ISBN < ’{1}’ “ _
& “ORDER BY ISBN DESC) ORDER BY ISBN", pageSize, dt.Rows(0)(“ISBN”))

DisplayPage(currPage - 1, sql)
End Sub

Private Sub btnNext_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnNext.Click
sql = String.Format(“SELECT TOP {0} * FROM Titles WHERE ISBN > ’{1}’ “ _

& “ORDER BY ISBN", pageSize, dt.Rows(dt.Rows.Count - 1)(“ISBN”))
DisplayPage(currPage + 1, sql)

End Sub

Private Sub btnLast_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLast.Click
’ Evaluate number of records on last page.
Dim num As Integer = recCount - pageSize * (pageCount - 1)
sql = String.Format(“SELECT * FROM Titles WHERE ISBN IN (SELECT TOP “ _

& “ {0} ISBN FROM Titles ORDER BY ISBN DESC) ORDER BY ISBN", num)
DisplayPage(pageCount, sql)

End Sub

‘ Go to Nth page.
Private Sub btnGoto_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGoto.Click
Try

’ txtPageNum contains the page number we want to jump to.
Dim pageNum As Integer = CInt(txtPageNum.Text)
sql = String.Format(“SELECT * FROM Titles WHERE ISBN IN “ _

& “(SELECT TOP {0} ISBN FROM Titles WHERE ISBN IN “ _
& “(SELECT TOP {1} ISBN FROM Titles ORDER BY ISBN) ORDER BY “ _
& “ ISBN DESC) ORDER BY ISBN", pageSize, pageSize * pageNum)

DisplayPage(pageNum, sql)
Catch ex As Exception

MessageBox.Show(“Page # must be in the range [1,” & _
pageCount.ToString & “]”)

End Try
End Sub

C21613753.fm  Page 1136  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1137

F21CN11

Figure 21-11. The demo program shows how to navigate among pages
of the Titles table in Biblio.mdb (over 8000 records).

The program evaluates the number of pages when the form is loaded, but
a more robust implementation should execute the GetPageNumber procedure
each time a new page is displayed. (See remarks in the DisplayPage routine.)
Updating a DataTable that contains paged results doesn’t require any special
technique—define a DataAdapter based on a generic SELECT statement:

Dim titDa As New OleDbDataAdapter(“SELECT * FROM Titles", cn)

and then use a CommandBuilder object to generate the INSERT, DELETE, and
UPDATE commands. Or create your custom update commands, as I described
earlier in this chapter.

Writing Provider-Agnostic Code
In Chapter 20, I explain that ADO and ADO.NET provide different solutions to
the problem of creating code that works with any provider and any database. In
ADO, the solution to this problem comes for free because you can use the same
ADO Connection, Command, and Recordset objects regardless of the OLE DB
provider you’re using, and you only have to correctly build the connection
string that you pass to the Connection object’s Open method.

The ADO.NET objects defined in the System.Data.OleDb and Sys-
tem.Data.SqlClient namespaces inherit the same core set of members from a
common base class or a common interface but are otherwise free to define new
properties and methods to better leverage the features of each provider. You
can take advantage of the common base class or the common interface to cre-
ate generic routines that work with either provider, even though the code you
write isn’t straightforward. Here are a few examples that perform common
operations in a provider-agnostic way.

C21613753.fm  Page 1137  Monday, March 18, 2002  10:58 AM



1138 Part V Database Applications

Creating a procedure that opens and returns either an OleDbConnection
or a SqlConnection object is relatively easy because these objects implement
the IDbConnection interface. You can discern which connection should be cre-
ated by checking whether the connection string contains the Provider attribute:

‘ Create a suitable connection object for a given connection string.
Function CreateConnection(ByVal connString As String) As IDbConnection

If connString.ToLower.IndexOf(“provider=“) >= 0 Then
Return New OleDbConnection(connString)

Else
Return New SqlConnection(connString)

End If
End Function

The Connection object exposed by both providers exposes a Create-
Command method that returns either an OleDbConnection or a SqlConnection
object. The Command object exposed by both providers implements the IDb-
Command interface, so you can perform a command in a database-independent
way, as follows:

‘ Start with the connection string.
Dim connStr As String = BiblioConnString
‘ Uncomment next line to check that it works also with the SQL provider.
‘ connStr = SqlPubsConnString

‘ Create a connection object, and assign to a generic IDbConnection variable.
Dim cn As IDbConnection = CreateConnection(connStr)
‘ Create a command on this connection.
Dim cmd As IDbCommand = cn.CreateCommand
‘ The CommandText must be assigned separately.
cmd.CommandText = “DELETE Publishers WHERE City=‘Boston’"
cmd.ExecuteNonQuery()

You can read data returned from a SELECT command by assigning the
result of an ExecuteReader method to an IDataReader variable:

‘ Get a DataReader object. (Assumes the cmd contains a SELECT query.)
Dim dr As IDataReader = cmd.ExecuteReader
‘ Write field values, and close the DataReader.
Do While dr.Read

Dim i As Integer
For i = 0 To dr.FieldCount - 1

Debug.Write(dr(i))
Next
Debug.WriteLine(““)

Loop
dr.Close()

C21613753.fm  Page 1138  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1139

(Of course, you can’t access the ExecuteXmlReader method through a generic
IDbCommand object because only the SQL Server provider exposes this
method.) Working with transactions in a database-independent way is also sim-
ple, but keep in mind that you can’t use nested transactions (with the OLE DB
.NET Data Provider) or named transactions (with the SQL Server .NET Data Pro-
vider) when you work with a generic IDbTransaction variable:

‘ Open a transaction.
Dim tr As IDbTransaction = cn.BeginTransaction
Try

’ Perform your database task here.
§

Catch ex As Exception
’ Roll back everything in case of error.
tr.Rollback()
tr = Nothing

Finally
’ If the transaction is still active, commit it.
If Not (tr Is Nothing) Then tr.Commit()

End Try

You can create parameterized Command objects that work equally well
with both providers, but in general this approach isn’t easy because the two
providers require a different syntax for the arguments in the CommandText
string. If you don’t consider the difficulty of building the command text, how-
ever, you’ll find it simple to create individual parameters in a way that works
with both providers:

‘ cmd is an IDbCommand variable.
cmd.Parameters.Add(“PubId", 1)

To assign additional properties, use the return value of the preceding
statement in a With block:

With cmd.Parameters.Add(“Total”)
.DbType = DbType.Double
.Direction = ParameterDirection.Output

End With

Most of the objects you need when working in disconnected mode—such
as the DataSet, DataTable, and DataRow objects—belong to the System.Data
namespace and therefore don’t depend on any specific provider. The only
other object that you must have to create database-agnostic code is the
generic DbDataAdapter object. Unfortunately, there’s no direct way to create
a DbDataAdapter object from a connection (as we do, for example, with
CreateCommand for the generic Command object), nor is there a way to create

C21613753.fm  Page 1139  Monday, March 18, 2002  10:58 AM



1140 Part V Database Applications

a generic CommandBuilder object. So we must define a helper routine that per-
forms both these tasks:

‘ This code requires that you have used the following Imports statement:
‘ Imports System.Data.Common

‘ Create a suitable DataAdapter object for a given connection object.
Function CreateDataAdapter(ByVal sql As String, _

ByVal cn As IDbConnection) As DbDataAdapter
If TypeOf cn Is OleDbConnection Then

’ Create an OleDbDataAdapter, and initialize its properties.
Dim da As New OleDbDataAdapter(sql, DirectCast(cn, OleDbConnection))
Dim cb As New OleDbCommandBuilder(da)
da.UpdateCommand = cb.GetUpdateCommand
da.DeleteCommand = cb.GetDeleteCommand
da.InsertCommand = cb.GetInsertCommand
Return da

ElseIf TypeOf cn Is SqlConnection Then
’ Create a SqlDataAdapter, and initialize its properties.
Dim da As New SqlDataAdapter(sql, DirectCast(cn, SqlConnection))
Dim cb As New SqlCommandBuilder(da)
da.UpdateCommand = cb.GetUpdateCommand
da.DeleteCommand = cb.GetDeleteCommand
da.InsertCommand = cb.GetInsertCommand
Return da

Else
Throw New ArgumentException()

End If
End Function

Filling a DataSet is now simple:

Dim da As OleDbDataAdapter = CreateDataAdapter(“SELECT * FROM Titles", cn)
Dim ds As New DataSet
da.Fill(ds, “Titles”)

Now we’re left with the problem of writing events that work with any type
of provider. In some cases, this job is simple because the event handler doesn’t
take any argument from the System.Data.OleDb or System.Data.SqlClient
namespace, so it can serve events from any provider. The Connection’s State-
Change event is an example of such events:

Sub OnStateChange(ByVal sender As Object, _
ByVal e As System.Data.StateChangeEventArgs)
Dim cn As IDbConnection = DirectCast(sender, IDbConnection)
§

End Sub

C21613753.fm  Page 1140  Monday, March 18, 2002  10:58 AM



Chapter 21 ADO.NET in Disconnected Mode 1141

Unfortunately, this approach doesn’t work with all possible events
because the type of their second argument often depends on the specific pro-
vider, and therefore, an event routine has no way to serve events coming from
objects belonging to just any provider. The best you can do is write two sepa-
rate event procedures that call the same helper routine, as in this code snippet:

‘ An example of two event procedures that delegate to a common routine
Sub OnOleDbRowUpdated(ByVal sender As Object, _

ByVal e As System.Data.OleDb.OleDbRowUpdatedEventArgs)
OnRowUpdated(sender, e)

End Sub

Sub OnSqlRowUpdated(ByVal sender As Object, _
ByVal e As System.Data.SqlClient.SqlRowUpdatedEventArgs)
OnRowUpdated(sender, e)

End Sub

Sub OnRowUpdated(ByVal sender As Object, _
ByVal e As System.Data.Common.RowUpdatedEventArgs)
§

End Sub

The preceding code works because both the OleDbRowUpdatedEventArgs
and the SqlRowUpdatedEventArgs class inherit from RowUpdatedEventArgs. The
following code selects one of the preceding procedures as the target for the
xxxRowUpdated event:

If TypeOf da Is OleDbDataAdapter Then
AddHandler DirectCast(da, OleDbDataAdapter).RowUpdated, _

AddressOf OnOleDbRowUpdated
ElseIf TypeOf da Is SqlDataAdapter Then

AddHandler DirectCast(da, SqlDataAdapter).RowUpdated, _
AddressOf OnSqlRowUpdated

Else
Throw New ArgumentException()

End If

Or you can create a generic routine that takes an object, the name of one
of its events, and an array of delegates that point to a potential event handler
and then uses .NET reflection to perform an AddHandler command on the first
delegate that matches the expected type:

‘ A routine that takes an object, an event name, and a list of potential
‘ delegates to event handlers and selects the first delegate that matches the
‘ expected signature of the event handler

(continued)

C21613753.fm  Page 1141  Monday, March 18, 2002  10:58 AM



1142 Part V Database Applications

Sub AddHandlerByName(ByVal obj As Object, ByVal eventName As String, _
ByVal ParamArray events() As [Delegate])

’ Get the type of the object argument.
Dim ty As System.Type = obj.GetType
’ Get the EventInfo corresponding to the requested event.
Dim evInfo As System.Reflection.EventInfo = ty.GetEvent(eventName)
’ Get the delegate class that represents the event procedure.
Dim evType As System.Type = evInfo.EventHandlerType

’ Compare this type with arguments being passed.
Dim del As [Delegate]
For Each del In events

If del.GetType Is evType Then
’ If this is the correct delegate, use AddHandler on it.
’ (This corresponds to a reflection’s AddEventHandler method.)
evInfo.AddEventHandler(obj, del)
Exit Sub

End If
Next

End Sub

Here’s how you can use the preceding routine:

‘ Dynamically add an event to the DataAdapter.
AddHandlerByName(da, “RowUpdated", _

New OleDbRowUpdatedEventHandler(AddressOf OnOleDbRowUpdated), _
New SqlRowUpdatedEventHandler(AddressOf OnSqlRowUpdated))

‘ Update the data source.
da.Update(ds, “Titles”)

As you’ve seen in this section, writing database-independent code with
ADO.NET isn’t as simple as it used to be with ADO. You have to adopt several
polymorphic techniques based on common base classes and interfaces, and
you even need to resort to reflection for some thorny tasks. On the other hand,
well-written code that performs well with any provider is surely a great form of
code reuse, and it will become more important when other .NET data providers
are introduced. Of course, deciding whether the added complexity is worth the
savings in coding is entirely up to you.

At this point, you know enough to build great database-centric applica-
tions. Yet there are a few more ADO.NET features that I haven’t covered yet. I
discuss them at the end of the next chapter, after I introduce the new XML-
related classes in the .NET Framework.

C21613753.fm  Page 1142  Monday, March 18, 2002  10:58 AM


